These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 33182813)

  • 1. Accelerometer-Based Human Activity Recognition for Patient Monitoring Using a Deep Neural Network.
    Fridriksdottir E; Bonomi AG
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33182813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of daily postures and walking modalities using a single chest-mounted tri-axial accelerometer.
    Nazarahari M; Rouhani H
    Med Eng Phys; 2018 Jul; 57():75-81. PubMed ID: 29691130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning for Classifying Physical Activities from Accelerometer Data.
    Nunavath V; Johansen S; Johannessen TS; Jiao L; Hansen BH; Berntsen S; Goodwin M
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SVM versus MAP on accelerometer data to distinguish among locomotor activities executed at different speeds.
    Schmid M; Riganti-Fulginei F; Bernabucci I; Laudani A; Bibbo D; Muscillo R; Salvini A; Conforto S
    Comput Math Methods Med; 2013; 2013():343084. PubMed ID: 24376469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single Accelerometer to Recognize Human Activities Using Neural Networks.
    Vakacherla SS; Kantharaju P; Mevada M; Kim M
    J Biomech Eng; 2023 Jun; 145(6):. PubMed ID: 36695756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moving the Lab into the Mountains: A Pilot Study of Human Activity Recognition in Unstructured Environments.
    Russell B; McDaid A; Toscano W; Hume P
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Support vector machine for classification of walking conditions using miniature kinematic sensors.
    Lau HY; Tong KY; Zhu H
    Med Biol Eng Comput; 2008 Jun; 46(6):563-73. PubMed ID: 18347832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coarse-Fine Convolutional Deep-Learning Strategy for Human Activity Recognition.
    Avilés-Cruz C; Ferreyra-Ramírez A; Zúñiga-López A; Villegas-Cortéz J
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30935117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reliable recognition of lying, sitting, and standing with a hip-worn accelerometer.
    Vähä-Ypyä H; Husu P; Suni J; Vasankari T; Sievänen H
    Scand J Med Sci Sports; 2018 Mar; 28(3):1092-1102. PubMed ID: 29144567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Light-Weight Artificial Neural Network for Recognition of Activities of Daily Living.
    Mohamed SA; Martinez-Hernandez U
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human activity monitoring system based on wearable sEMG and accelerometer wireless sensor nodes.
    Biagetti G; Crippa P; Falaschetti L; Orcioni S; Turchetti C
    Biomed Eng Online; 2018 Nov; 17(Suppl 1):132. PubMed ID: 30458783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identity and Gender Recognition Using a Capacitive Sensing Floor and Neural Networks.
    Konings D; Alam F; Faulkner N; de Jong C
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feature selection for elderly faller classification based on wearable sensors.
    Howcroft J; Kofman J; Lemaire ED
    J Neuroeng Rehabil; 2017 May; 14(1):47. PubMed ID: 28558724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can a single lower trunk body-fixed sensor differentiate between level-walking and stair descent and ascent in older adults? Preliminary findings.
    Weiss A; Brozgol M; Giladi N; Hausdorff JM
    Med Eng Phys; 2016 Oct; 38(10):1146-51. PubMed ID: 27527394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity classification in persons with stroke based on frequency features.
    Laudanski A; Brouwer B; Li Q
    Med Eng Phys; 2015 Feb; 37(2):180-6. PubMed ID: 25559935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring Orientation Invariant Heuristic Features with Variant Window Length of 1D-CNN-LSTM in Human Activity Recognition.
    Barua A; Fuller D; Musa S; Jiang X
    Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bathroom activities monitoring for older adults by a wrist-mounted accelerometer using a hybrid deep learning model.
    Shang M; Zhang Y; Ali Amer AY; D'Haeseleer I; Vanrumste B
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7112-7115. PubMed ID: 34892740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust Human Activity Recognition by Integrating Image and Accelerometer Sensor Data Using Deep Fusion Network.
    Kang J; Shin J; Shin J; Lee D; Choi A
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Activity Recognition: Review, Taxonomy and Open Challenges.
    Arshad MH; Bilal M; Gani A
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning-Based Human Activity Real-Time Recognition for Pedestrian Navigation.
    Ye J; Li X; Zhang X; Zhang Q; Chen W
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32366055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.