These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33182878)

  • 1. Long-range remote focusing by image-plane aberration correction.
    Jiang H; Wang C; Wei B; Gan W; Cai D; Cui M
    Opt Express; 2020 Nov; 28(23):34008-34014. PubMed ID: 33182878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Converting lateral scanning into axial focusing to speed up three-dimensional microscopy.
    Chakraborty T; Chen B; Daetwyler S; Chang BJ; Vanderpoorten O; Sapoznik E; Kaminski CF; Knowles TPJ; Dean KM; Fiolka R
    Light Sci Appl; 2020; 9():165. PubMed ID: 33024553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extended range and aberration-free autofocusing via remote focusing and sequence-dependent learning.
    Cui J; Turcotte R; Emptage NJ; Booth MJ
    Opt Express; 2021 Oct; 29(22):36660-36674. PubMed ID: 34809072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Axial de-scanning using remote focusing in the detection arm of light-sheet microscopy.
    Dibaji H; Nasaban Shotorban AK; Grattan RM; Lucero S; Schodt DJ; Lidke KA; Petruccelli J; Lidke DS; Liu S; Chakraborty T
    bioRxiv; 2024 Apr; ():. PubMed ID: 38659774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Axial de-scanning using remote focusing in the detection arm of light-sheet microscopy.
    Dibaji H; Shotorban AKN; Habibi M; Grattan RM; Lucero S; Schodt DJ; Lidke KA; Petruccelli J; Lidke DS; Liu S; Chakraborty T
    Res Sq; 2023 Oct; ():. PubMed ID: 37886461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Axial de-scanning using remote focusing in the detection arm of light-sheet microscopy.
    Dibaji H; Kazemi Nasaban Shotorban A; Grattan RM; Lucero S; Schodt DJ; Lidke KA; Petruccelli J; Lidke DS; Liu S; Chakraborty T
    Nat Commun; 2024 Jun; 15(1):5019. PubMed ID: 38866746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-NA two-photon single cell imaging with remote focusing using a diffractive tunable lens.
    May MA; Bawart M; Langeslag M; Bernet S; Kress M; Ritsch-Marte M; Jesacher A
    Biomed Opt Express; 2020 Dec; 11(12):7183-7191. PubMed ID: 33408989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasound focusing using magnetic resonance acoustic radiation force imaging: application to ultrasound transcranial therapy.
    Hertzberg Y; Volovick A; Zur Y; Medan Y; Vitek S; Navon G
    Med Phys; 2010 Jun; 37(6):2934-42. PubMed ID: 20632605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive optics enables aberration-free single-objective remote focusing for two-photon fluorescence microscopy.
    Yang Y; Chen W; Fan JL; Ji N
    Biomed Opt Express; 2021 Jan; 12(1):354-366. PubMed ID: 33520387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous Spatial and Temporal Focusing in Nonlinear Microscopy.
    Durst ME; Zhu G; Xu C
    Opt Commun; 2008 Apr; 281(7):1796-1805. PubMed ID: 18496597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalised adaptive optics method for high-NA aberration-free refocusing in refractive-index-mismatched media.
    Cui J; Antonello J; Kirkpatrick AR; Salter PS; Booth MJ
    Opt Express; 2022 Mar; 30(7):11809-11824. PubMed ID: 35473116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aberration-free 3D imaging via DMD-based two-photon microscopy and sensorless adaptive optics.
    Ren M; Chen J; Chen D; Chen SC
    Opt Lett; 2020 May; 45(9):2656-2659. PubMed ID: 32356846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aberration-corrected three-dimensional non-inertial scanning for femtosecond lasers.
    Wang Y; Li H; Hu Q; Cheng X; Chen R; Lv X; Zeng S
    Opt Express; 2020 Sep; 28(20):29904-29917. PubMed ID: 33114879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remote z-scanning with a macroscopic voice coil motor for fast 3D multiphoton laser scanning microscopy.
    Rupprecht P; Prendergast A; Wyart C; Friedrich RW
    Biomed Opt Express; 2016 May; 7(5):1656-71. PubMed ID: 27231612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the limits of remote focusing.
    Mohanan S; Corbett AD
    Opt Express; 2023 May; 31(10):16281-16294. PubMed ID: 37157710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A CT based correction method for speed of sound aberration for ultrasound based image guided radiotherapy.
    Fontanarosa D; van der Meer S; Harris E; Verhaegen F
    Med Phys; 2011 May; 38(5):2665-73. PubMed ID: 21776803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inter-plane artifact suppression in tomosynthesis using 3D CT image data.
    Kim JG; Jin SO; Cho MH; Lee SY
    Biomed Eng Online; 2011 Dec; 10():106. PubMed ID: 22151538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional focusing through scattering media using conjugate adaptive optics with remote focusing (CAORF).
    Tao X; Lam T; Zhu B; Li Q; Reinig MR; Kubby J
    Opt Express; 2017 May; 25(9):10368-10383. PubMed ID: 28468409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pupil plane actuated remote focusing for rapid focal depth control.
    Cheng Z; Jiang H; Gan W; Cui M
    Opt Express; 2020 Aug; 28(18):26407-26413. PubMed ID: 32906913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Aberration Correction for Conformal Window of High-Speed Aircraft Using Optimized Model-Based Wavefront Sensorless Adaptive Optics.
    Dong B; Li Y; Han XL; Hu B
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27598161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.