These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33182901)

  • 1. Upconversion detection of 1.25 Gb/s mid-infrared telecommunications using a silicon avalanche photodiode.
    Gray AC; Berry SA; Carpenter LG; Gates JC; Gawith CBE; Smith PGR
    Opt Express; 2020 Nov; 28(23):34279-34289. PubMed ID: 33182901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mid-infrared transmitter and receiver modules for free-space optical communication.
    Hao Q; Zhu G; Yang S; Yang K; Duan T; Xie X; Huang K; Zeng H
    Appl Opt; 2017 Mar; 56(8):2260-2264. PubMed ID: 28375270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mid-infrared single-photon counting.
    Temporão G; Tanzilli S; Zbinden H; Gisin N; Aellen T; Giovannini M; Faist J
    Opt Lett; 2006 Apr; 31(8):1094-6. PubMed ID: 16625914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths.
    Roussev RV; Langrock C; Kurz JR; Fejer MM
    Opt Lett; 2004 Jul; 29(13):1518-20. PubMed ID: 15259732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal noise in mid-infrared broadband upconversion detectors.
    Barh A; Tidemand-Lichtenberg P; Pedersen C
    Opt Express; 2018 Feb; 26(3):3249-3259. PubMed ID: 29401855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient and low-noise single-photon detection in 1550 nm communication band by frequency upconversion in periodically poled LiNbO3 waveguides.
    Kamada H; Asobe M; Honjo T; Takesue H; Tokura Y; Nishida Y; Tadanaga O; Miyazawa H
    Opt Lett; 2008 Apr; 33(7):639-41. PubMed ID: 18382502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1.5 microm photon-counting optical time-domain reflectometry with a single-photon detector based on upconversion in a periodically poled lithium niobate waveguide.
    Diamanti E; Langrock C; Fejer MM; Yamamoto Y; Takesue H
    Opt Lett; 2006 Mar; 31(6):727-9. PubMed ID: 16544604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis.
    Pelc JS; Ma L; Phillips CR; Zhang Q; Langrock C; Slattery O; Tang X; Fejer MM
    Opt Express; 2011 Oct; 19(22):21445-56. PubMed ID: 22108994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of an InSb Detector and Upconversion Detector for Infrared Polarization Spectroscopy.
    Pedersen RL; Hot D; Li Z
    Appl Spectrosc; 2018 May; 72(5):793-797. PubMed ID: 29278916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 10 Gbps DPSK transmission over free-space link in the mid-infrared.
    Su Y; Wang W; Hu X; Hu H; Huang X; Wang Y; Si J; Xie X; Han B; Feng H; Hao Q; Zhu G; Duan T; Zhao W
    Opt Express; 2018 Dec; 26(26):34515-34528. PubMed ID: 30650874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient single-photon counting at 1.55 microm by means of frequency upconversion.
    Albota MA; Wong FN
    Opt Lett; 2004 Jul; 29(13):1449-51. PubMed ID: 15259709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Waveguide-based single-pixel up-conversion infrared spectrometer.
    Zhang Q; Langrock C; Fejer MM; Yamamoto Y
    Opt Express; 2008 Nov; 16(24):19557-61. PubMed ID: 19030042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiband generation of mid infrared by use of periodically poled lithium niobate.
    Chuang T; Burnham R
    Opt Lett; 1998 Jan; 23(1):43-5. PubMed ID: 18084406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous-wave sodium D2 resonance radiation generated in single-pass sum-frequency generation with periodically poled lithium niobate.
    Yue J; She CY; Williams BP; Vance JD; Acott PE; Kawahara TD
    Opt Lett; 2009 Apr; 34(7):1093-5. PubMed ID: 19340230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mid-Infrared Frequency Comb Generation and Spectroscopy with Few-Cycle Pulses and χ^{(2)} Nonlinear Optics.
    Lind AJ; Kowligy A; Timmers H; Cruz FC; Nader N; Silfies MC; Allison TK; Diddams SA
    Phys Rev Lett; 2020 Apr; 124(13):133904. PubMed ID: 32302192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient and stable single-photon counting at 1.55 microm by intracavity frequency upconversion.
    Pan H; Zeng H
    Opt Lett; 2006 Mar; 31(6):793-5. PubMed ID: 16544626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mid-infrared ethene detection using difference frequency generation in a quasi-phase-matched LiNbO3 waveguide.
    Grilli R; Ciaffoni L; Hancock G; Peverall R; Ritchie GA; Orr-Ewing AJ
    Appl Opt; 2009 Oct; 48(30):5696-703. PubMed ID: 19844303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fully-integrated 12.5-Gb/s 850-nm CMOS optical receiver based on a spatially-modulated avalanche photodetector.
    Lee MJ; Youn JS; Park KY; Choi WY
    Opt Express; 2014 Feb; 22(3):2511-8. PubMed ID: 24663543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-way single-photon-level frequency conversion between 852 nm and 1560 nm for connecting cesium D2 line with the telecom C-band.
    Zhang K; He J; Wang J
    Opt Express; 2020 Sep; 28(19):27785-27796. PubMed ID: 32988064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Terahertz detection by upconversion to the near-infrared using picosecond pulses.
    Pfeiffer T; Kutas M; Haase B; Molter D; von Freymann G
    Opt Express; 2020 Sep; 28(20):29419-29429. PubMed ID: 33114842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.