These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Self-trapped spatiotemporal necklace-ring solitons in the Ginzburg-Landau equation. He YJ; Fan HH; Dong JW; Wang HZ Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016611. PubMed ID: 16907208 [TBL] [Abstract][Full Text] [Related]
6. Stabilization of 1D solitons by fractional derivatives in systems with quintic nonlinearity. Stephanovich VA; Olchawa W Sci Rep; 2022 Jan; 12(1):384. PubMed ID: 35013507 [TBL] [Abstract][Full Text] [Related]
7. Stabilization and destabilization of second-order solitons against perturbations in the nonlinear Schrödinger equation. Yanay H; Khaykovich L; Malomed BA Chaos; 2009 Sep; 19(3):033145. PubMed ID: 19792025 [TBL] [Abstract][Full Text] [Related]
8. Symmetry breaking of solitons in the PT-symmetric nonlinear Schrödinger equation with the cubic-quintic competing saturable nonlinearity. Bo WB; Wang RR; Liu W; Wang YY Chaos; 2022 Sep; 32(9):093104. PubMed ID: 36182356 [TBL] [Abstract][Full Text] [Related]
9. Dynamics of nonlinear waves in two-dimensional cubic-quintic nonlinear Schrödinger equation with spatially modulated nonlinearities and potentials. Xu SL; Cheng JX; Belić MR; Hu ZL; Zhao Y Opt Express; 2016 May; 24(9):10066-77. PubMed ID: 27137617 [TBL] [Abstract][Full Text] [Related]
10. Generation of random soliton-like beams in a nonlinear fractional Schrödinger equation. Wang J; Jin Y; Gong X; Yang L; Chen J; Xue P Opt Express; 2022 Feb; 30(5):8199-8211. PubMed ID: 35299566 [TBL] [Abstract][Full Text] [Related]
11. Existence, symmetry breaking bifurcation and stability of two-dimensional optical solitons supported by fractional diffraction. Li P; Li R; Dai C Opt Express; 2021 Feb; 29(3):3193-3210. PubMed ID: 33770923 [TBL] [Abstract][Full Text] [Related]
12. Stability of optical solitons in parity-time-symmetric optical lattices with competing cubic and quintic nonlinearities. Ge L; Shen M; Zang T; Ma C; Dai L Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023203. PubMed ID: 25768622 [TBL] [Abstract][Full Text] [Related]
14. Chirped Peregrine solitons in a class of cubic-quintic nonlinear Schrödinger equations. Chen S; Baronio F; Soto-Crespo JM; Liu Y; Grelu P Phys Rev E; 2016 Jun; 93(6):062202. PubMed ID: 27415250 [TBL] [Abstract][Full Text] [Related]
15. Surface gap solitons in a nonlinear fractional Schrödinger equation. Xiao J; Tian Z; Huang C; Dong L Opt Express; 2018 Feb; 26(3):2650-2658. PubMed ID: 29401802 [TBL] [Abstract][Full Text] [Related]
16. Generation of polygonal soliton clusters and fundamental solitons in dissipative systems by necklace-ring beams with radial-azimuthal phase modulation. He Y; Mihalache D; Malomed BA; Qiu Y; Chen Z; Li Y Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066206. PubMed ID: 23005195 [TBL] [Abstract][Full Text] [Related]
17. Interactions of nonlocal dark solitons under competing cubic-quintic nonlinearities. Chen W; Shen M; Kong Q; Shi J; Wang Q; Krolikowski W Opt Lett; 2014 Apr; 39(7):1764-7. PubMed ID: 24686599 [TBL] [Abstract][Full Text] [Related]
18. Dynamical stabilization of solitons in cubic-quintic nonlinear Schrödinger model. Abdullaev FKh; Garnier J Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):035603. PubMed ID: 16241508 [TBL] [Abstract][Full Text] [Related]
19. Solitons with cubic and quintic nonlinearities modulated in space and time. Avelar AT; Bazeia D; Cardoso WB Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):025602. PubMed ID: 19391798 [TBL] [Abstract][Full Text] [Related]
20. Spontaneous symmetry breaking and ghost states supported by the fractional PT-symmetric saturable nonlinear Schrödinger equation. Zhong M; Wang L; Li P; Yan Z Chaos; 2023 Jan; 33(1):013106. PubMed ID: 36725663 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]