These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33182951)

  • 1. Adaptive optics via pupil ring segmentation improves spherical aberration correction for two-photon imaging of optically cleared tissues.
    Gao Y; Liu L; Yin Y; Liao J; Yu J; Wu T; Ye S; Li H; Zheng W
    Opt Express; 2020 Nov; 28(23):34935-34947. PubMed ID: 33182951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiphoton imaging microscopy at deeper layers with adaptive optics control of spherical aberration.
    Bueno JM; Skorsetz M; Palacios R; Gualda EJ; Artal P
    J Biomed Opt; 2014 Jan; 19(1):011007. PubMed ID: 23864036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing image quality in cleared tissue with adaptive optics.
    Reinig MR; Novak SW; Tao X; Bentolila LA; Roberts DG; MacKenzie-Graham A; Godshalk SE; Raven MA; Knowles DW; Kubby J
    J Biomed Opt; 2016 Dec; 21(12):121508. PubMed ID: 27735018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.
    Cua M; Wahl DJ; Zhao Y; Lee S; Bonora S; Zawadzki RJ; Jian Y; Sarunic MV
    Sci Rep; 2016 Sep; 6():32223. PubMed ID: 27599635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correction of spherical aberration in multi-focal multiphoton microscopy with spatial light modulator.
    Matsumoto N; Konno A; Ohbayashi Y; Inoue T; Matsumoto A; Uchimura K; Kadomatsu K; Okazaki S
    Opt Express; 2017 Mar; 25(6):7055-7068. PubMed ID: 28381046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy.
    Streich L; Boffi JC; Wang L; Alhalaseh K; Barbieri M; Rehm R; Deivasigamani S; Gross CT; Agarwal A; Prevedel R
    Nat Methods; 2021 Oct; 18(10):1253-1258. PubMed ID: 34594033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution in vivo imaging of mouse brain through the intact skull.
    Park JH; Sun W; Cui M
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9236-41. PubMed ID: 26170286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A spherical aberration-free microscopy system for live brain imaging.
    Ue Y; Monai H; Higuchi K; Nishiwaki D; Tajima T; Okazaki K; Hama H; Hirase H; Miyawaki A
    Biochem Biophys Res Commun; 2018 Jun; 500(2):236-241. PubMed ID: 29649479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of refractive index heterogeneity within kidney tissue on multiphoton fluorescence excitation microscopy.
    Young PA; Clendenon SG; Byars JM; Dunn KW
    J Microsc; 2011 May; 242(2):148-56. PubMed ID: 21118239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local aberration control to improve efficiency in multiphoton holographic projections.
    Maddalena L; Keizers H; Pozzi P; Carroll E
    Opt Express; 2022 Aug; 30(16):29128-29147. PubMed ID: 36299095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning-enabled efficient image restoration for 3D microscopy of turbid biological specimens.
    Xiao L; Fang C; Zhu L; Wang Y; Yu T; Zhao Y; Zhu D; Fei P
    Opt Express; 2020 Sep; 28(20):30234-30247. PubMed ID: 33114907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive optics in microscopy.
    Booth MJ
    Philos Trans A Math Phys Eng Sci; 2007 Dec; 365(1861):2829-43. PubMed ID: 17855218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple method to improve spatial resolution for in vivo two-photon fluorescence imaging.
    Estrada G; Beetle C; Schummers J
    Appl Opt; 2015 Dec; 54(34):10044-50. PubMed ID: 26836658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive optical versus spherical aberration corrections for
    Turcotte R; Liang Y; Ji N
    Biomed Opt Express; 2017 Aug; 8(8):3891-3902. PubMed ID: 28856058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplexed aberration measurement for deep tissue imaging in vivo.
    Wang C; Liu R; Milkie DE; Sun W; Tan Z; Kerlin A; Chen TW; Kim DS; Ji N
    Nat Methods; 2014 Oct; 11(10):1037-40. PubMed ID: 25128976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correction of depth-induced spherical aberration for deep observation using two-photon excitation fluorescence microscopy with spatial light modulator.
    Matsumoto N; Inoue T; Matsumoto A; Okazaki S
    Biomed Opt Express; 2015 Jul; 6(7):2575-87. PubMed ID: 26203383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pupil-segmentation-based adaptive optical microscopy with full-pupil illumination.
    Milkie DE; Betzig E; Ji N
    Opt Lett; 2011 Nov; 36(21):4206-8. PubMed ID: 22048366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic aberration correction for multiharmonic microscopy.
    Olivier N; Débarre D; Beaurepaire E
    Opt Lett; 2009 Oct; 34(20):3145-7. PubMed ID: 19838254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution in-depth imaging of optically cleared thick samples using an adaptive SPIM.
    Masson A; Escande P; Frongia C; Clouvel G; Ducommun B; Lorenzo C
    Sci Rep; 2015 Nov; 5():16898. PubMed ID: 26576666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-photon imaging of mouse brain structure and function through the intact skull.
    Wang T; Ouzounov DG; Wu C; Horton NG; Zhang B; Wu CH; Zhang Y; Schnitzer MJ; Xu C
    Nat Methods; 2018 Oct; 15(10):789-792. PubMed ID: 30202059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.