These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 33182955)

  • 1. Acceleration and expansion of a photorealistic computer-generated hologram using backward ray tracing and multiple off-axis wavefront recording plane methods.
    Sun M; Yuan Y; Bi Y; Zhang S; Zhu J; Zhang W
    Opt Express; 2020 Nov; 28(23):34994-35005. PubMed ID: 33182955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of real-time large computer generated hologram using wavefront recording method.
    Weng J; Shimobaba T; Okada N; Nakayama H; Oikawa M; Masuda N; Ito T
    Opt Express; 2012 Feb; 20(4):4018-23. PubMed ID: 22418159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation speed and reconstructed image quality enhancement of a long-depth object using double wavefront recording planes and a GPU.
    Phan AH; Piao ML; Gil SK; Kim N
    Appl Opt; 2014 Aug; 53(22):4817-24. PubMed ID: 25090310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation for computer generated hologram using ray-sampling plane.
    Wakunami K; Yamaguchi M
    Opt Express; 2011 May; 19(10):9086-101. PubMed ID: 21643163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display.
    Shimobaba T; Nakayama H; Masuda N; Ito T
    Opt Express; 2010 Sep; 18(19):19504-9. PubMed ID: 20940846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast method of calculating a photorealistic hologram based on orthographic ray-wavefront conversion.
    Igarashi S; Nakamura T; Yamaguchi M
    Opt Lett; 2016 Apr; 41(7):1396-9. PubMed ID: 27192245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the quality of full-color holographic three-dimensional displays using depth-related multiple wavefront recording planes with uniform active areas.
    Piao YL; Erdenebat MU; Zhao Y; Kwon KC; Piao ML; Kang H; Kim N
    Appl Opt; 2020 Jun; 59(17):5179-5188. PubMed ID: 32543538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer-generated photorealistic hologram using ray-wavefront conversion based on the additive compressive light field approach.
    Wang Z; Zhu LM; Zhang X; Dai P; Lv GQ; Feng QB; Wang AT; Ming H
    Opt Lett; 2020 Feb; 45(3):615-618. PubMed ID: 32004265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of wavefront recording plane-based hologram calculations: ray-tracing method versus look-up table method.
    Yanagihara H; Shimobaba T; Kakue T; Ito T
    Appl Opt; 2020 Mar; 59(8):2400-2408. PubMed ID: 32225774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane.
    Shimobaba T; Masuda N; Ito T
    Opt Lett; 2009 Oct; 34(20):3133-5. PubMed ID: 19838250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast generation of digital holograms based on warping of the wavefront recording plane.
    Tsang PW; Poon TC
    Opt Express; 2015 Mar; 23(6):7667-73. PubMed ID: 25837104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple calculation of a computer-generated hologram for lensless holographic 3D projection using a nonuniform sampled wavefront recording plane.
    Chang C; Wu J; Qi Y; Yuan C; Nie S; Xia J
    Appl Opt; 2016 Oct; 55(28):7988-7996. PubMed ID: 27828036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wavefront recording plane-like method for polygon-based holograms.
    Wang F; Blinder D; Ito T; Shimobaba T
    Opt Express; 2023 Jan; 31(2):1224-1233. PubMed ID: 36785162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acceleration of computer-generated holograms using tilted wavefront recording plane method.
    Arai D; Shimobaba T; Murano K; Endo Y; Hirayama R; Hiyama D; Kakue T; Ito T
    Opt Express; 2015 Jan; 23(2):1740-7. PubMed ID: 25835929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acceleration of the calculation speed of computer-generated holograms using the sparsity of the holographic fringe pattern for a 3D object.
    Kim HG; Jeong H; Man Ro Y
    Opt Express; 2016 Oct; 24(22):25317-25328. PubMed ID: 27828470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acceleration of computer-generated hologram using wavefront-recording plane and look-up table in three-dimensional holographic display.
    Pi D; Liu J; Han Y; Yu S; Xiang N
    Opt Express; 2020 Mar; 28(7):9833-9841. PubMed ID: 32225583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time relighting of digital holograms based on wavefront recording plane method.
    Tsang PW; Cheung KW; Poon TC
    Opt Express; 2012 Mar; 20(6):5962-7. PubMed ID: 22418472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast Hologram Calculation Method Based on Wavefront Precise Diffraction.
    Wang Z; Li Y; Tang Z; Li Z; Wang D
    Micromachines (Basel); 2023 Aug; 14(9):. PubMed ID: 37763853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three types of computer-generated hologram synthesized from multiple angular viewpoints of a three-dimensional scene.
    Abookasis D; Rosen J
    Appl Opt; 2006 Sep; 45(25):6533-8. PubMed ID: 16912793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From image pair to a computer generated hologram for a real-world scene.
    Ding S; Cao S; Zheng YF; Ewing RL
    Appl Opt; 2016 Sep; 55(27):7583-92. PubMed ID: 27661586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.