These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33183592)

  • 1. Cellulose-lignin composite fibres as precursors for carbon fibres. Part 1 - Manufacturing and properties of precursor fibres.
    Trogen M; Le ND; Sawada D; Guizani C; Lourençon TV; Pitkänen L; Sixta H; Shah R; O'Neill H; Balakshin M; Byrne N; Hummel M
    Carbohydr Polym; 2021 Jan; 252():117133. PubMed ID: 33183592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Strength Composite Fibers from Cellulose-Lignin Blends Regenerated from Ionic Liquid Solution.
    Ma Y; Asaadi S; Johansson LS; Ahvenainen P; Reza M; Alekhina M; Rautkari L; Michud A; Hauru L; Hummel M; Sixta H
    ChemSusChem; 2015 Dec; 8(23):4030-9. PubMed ID: 26542190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Filament spinning of unbleached birch kraft pulps: Effect of pulping intensity on the processability and the fiber properties.
    Ma Y; Stubb J; Kontro I; Nieminen K; Hummel M; Sixta H
    Carbohydr Polym; 2018 Jan; 179():145-151. PubMed ID: 29111037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Keratin-Cellulose Blend Fibers as Precursors for Carbon Fibers.
    Zahra H; Selinger J; Sawada D; Ogawa Y; Orelma H; Ma Y; Kumagai S; Yoshioka T; Hummel M
    ACS Sustain Chem Eng; 2022 Jul; 10(26):8314-8325. PubMed ID: 35847521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural analysis of Ioncell-F fibres from birch wood.
    Asaadi S; Hummel M; Ahvenainen P; Gubitosi M; Olsson U; Sixta H
    Carbohydr Polym; 2018 Feb; 181():893-901. PubMed ID: 29254051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Close Packing of Cellulose and Chitosan in Regenerated Cellulose Fibers Improves Carbon Yield and Structural Properties of Respective Carbon Fibers.
    Zahra H; Sawada D; Guizani C; Ma Y; Kumagai S; Yoshioka T; Sixta H; Hummel M
    Biomacromolecules; 2020 Oct; 21(10):4326-4335. PubMed ID: 32870661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upcycling of cellulosic textile waste with bacterial cellulose via Ioncell® technology.
    A G S Silva F; Schlapp-Hackl I; Nygren N; Heimala S; Leinonen A; Dourado F; Gama M; Hummel M
    Int J Biol Macromol; 2024 Jun; 271(Pt 1):132194. PubMed ID: 38821791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Performance Acetylated Ioncell-F Fibers with Low Degree of Substitution.
    Asaadi S; Kakko T; King AWT; Kilpeläinen I; Hummel M; Sixta H
    ACS Sustain Chem Eng; 2018 Jul; 6(7):9418-9426. PubMed ID: 30271692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upscaling of lignin precursor melt spinning by bicomponent spinning and its use for carbon fibre production.
    Bostan L; Hosseinaei O; Fourné R; Herrmann AS
    Philos Trans A Math Phys Eng Sci; 2021 Nov; 379(2209):20200334. PubMed ID: 34510930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose regeneration and spinnability from ionic liquids.
    Hauru LK; Hummel M; Nieminen K; Michud A; Sixta H
    Soft Matter; 2016 Feb; 12(5):1487-95. PubMed ID: 26660047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fungal Treatment Modifies Kraft Lignin for Lignin- and Cellulose-Based Carbon Fiber Precursors.
    Mikkilä J; Trogen M; Koivu KAY; Kontro J; Kuuskeri J; Maltari R; Dekere Z; Kemell M; Mäkelä MR; Nousiainen PA; Hummel M; Sipilä J; Hildén K
    ACS Omega; 2020 Mar; 5(11):6130-6140. PubMed ID: 32226896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of hydration on the micromechanics of regenerated cellulose fibres from ionic liquid solutions of varying draw ratios.
    Bulota M; Michud A; Hummel M; Hughes M; Sixta H
    Carbohydr Polym; 2016 Oct; 151():1110-1114. PubMed ID: 27474661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced stabilization of cellulose-lignin hybrid filaments for carbon fiber production.
    Byrne N; De Silva R; Ma Y; Sixta H; Hummel M
    Cellulose (Lond); 2018; 25(1):723-733. PubMed ID: 31997858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissolution of less-processed wood fibers without bleaching in an ionic liquid: Effect of lignin condensation on wood component dissolution.
    Wang H; Hirth K; Zhu J; Ma Q; Liu C; Zhu JY
    Int J Biol Macromol; 2019 Aug; 134():740-748. PubMed ID: 31100399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dry-Jet Wet Spinning of Thermally Stable Lignin-Textile Grade Polyacrylonitrile Fibers Regenerated from Chloride-Based Ionic Liquids Compounds.
    Al Aiti M; Das A; Kanerva M; Järventausta M; Johansson P; Scheffler C; Göbel M; Jehnichen D; Brünig H; Wulff L; Boye S; Arnhold K; Kuusipalo J; Heinrich G
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32825486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulose-lignin composite fibers as precursors for carbon fibers: Part 2 - The impact of precursor properties on carbon fibers.
    Le ND; Trogen M; Ma Y; Varley RJ; Hummel M; Byrne N
    Carbohydr Polym; 2020 Dec; 250():116918. PubMed ID: 33049890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved procedure for electro-spinning and carbonisation of neat solvent-fractionated softwood Kraft lignin.
    Khan I; Hararak B; Fernando GF
    Sci Rep; 2021 Aug; 11(1):16237. PubMed ID: 34376725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renewable High-Performance Fibers from the Chemical Recycling of Cotton Waste Utilizing an Ionic Liquid.
    Asaadi S; Hummel M; Hellsten S; Härkäsalmi T; Ma Y; Michud A; Sixta H
    ChemSusChem; 2016 Nov; 9(22):3250-3258. PubMed ID: 27796085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disassociated molecular orientation distributions of a composite cellulose-lignin carbon fiber precursor: A study by rotor synchronized NMR spectroscopy and X-ray scattering.
    Svenningsson L; Bengtsson J; Jedvert K; Schlemmer W; Theliander H; Evenäs L
    Carbohydr Polym; 2021 Feb; 254():117293. PubMed ID: 33357862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conductive Carbon Microfibers Derived from Wet-Spun Lignin/Nanocellulose Hydrogels.
    Wang L; Ago M; Borghei M; Ishaq A; Papageorgiou AC; Lundahl M; Rojas OJ
    ACS Sustain Chem Eng; 2019 Mar; 7(6):6013-6022. PubMed ID: 30931178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.