These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 33183599)

  • 1. Pyrodextrins from waxy and normal tapioca starches: Molecular structure and in vitro digestibility.
    Weil W; Weil RC; Keawsompong S; Sriroth K; Seib PA; Shi YC
    Carbohydr Polym; 2021 Jan; 252():117140. PubMed ID: 33183599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of indigestible pyrodextrins from different starch sources.
    Laurentin A; Cárdenas M; Ruales J; Pérez E; Tovar J
    J Agric Food Chem; 2003 Aug; 51(18):5510-5. PubMed ID: 12926906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of reaction condition on glycosidic linkage structure, physical-chemical properties and in vitro digestibility of pyrodextrins prepared from native waxy maize starch.
    Chen J; Xiao J; Wang Z; Cheng H; Zhang Y; Lin B; Qin L; Bai Y
    Food Chem; 2020 Aug; 320():126491. PubMed ID: 32208185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in molecular size and shape of waxy maize starch during dextrinization.
    Sun Z; Kang J; Shi YC
    Food Chem; 2021 Jun; 348():128983. PubMed ID: 33515943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acid hydrolysis of native and annealed starches and branch-structure of their Naegeli dextrins.
    Nakazawa Y; Wang YJ
    Carbohydr Res; 2003 Nov; 338(24):2871-82. PubMed ID: 14667708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indigestible pyrodextrins prepared from corn starch in the presence of glacial acetic acid.
    Lin CL; Lin JH; Zeng HM; Wu YH; Chang YH
    Carbohydr Polym; 2018 May; 188():68-75. PubMed ID: 29525173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural changes from native waxy maize starch granules to cold-water-soluble pyrodextrin during thermal treatment.
    Bai Y; Cai L; Doutch J; Gilbert EP; Shi YC
    J Agric Food Chem; 2014 May; 62(18):4186-94. PubMed ID: 24779859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of granular characteristics on pasting properties of starch blends.
    Lin JH; Kao WT; Tsai YC; Chang YH
    Carbohydr Polym; 2013 Nov; 98(2):1553-60. PubMed ID: 24053839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of pyrodextrin in relation to its retrogradation properties.
    Han X; Kang J; Bai Y; Xue M; Shi YC
    Food Chem; 2018 Mar; 242():169-173. PubMed ID: 29037674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical structures in pyrodextrin determined by nuclear magnetic resonance spectroscopy.
    Bai Y; Shi YC
    Carbohydr Polym; 2016 Oct; 151():426-433. PubMed ID: 27474585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of plasma-activated water on the structure and in vitro digestibility of waxy and normal maize starches during heat-moisture treatment.
    Yan Y; Feng L; Shi M; Cui C; Liu Y
    Food Chem; 2020 Feb; 306():125589. PubMed ID: 31606629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in structural, physicochemical, and digestive properties of normal and waxy wheat starch during repeated and continuous annealing.
    Su C; Saleh ASM; Zhang B; Zhao K; Ge X; Zhang Q; Li W
    Carbohydr Polym; 2020 Nov; 247():116675. PubMed ID: 32829803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissolution of waxy maize pyrodextrin granules in mixtures of glycerol and water, separating loss of crystallinity from loss of birefringence.
    Sun Z; Shi J; Shi YC
    Carbohydr Polym; 2022 Apr; 281():119062. PubMed ID: 35074126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrodextrinization of yam (Dioscorea sp.) starch isolated from tubers grown in Brazil and physicochemical characterization of yellow pyrodextrins.
    Lovera M; Castro GMC; Pires NDR; Bastos MDSR; Holanda-Araújo ML; Laurentin A; Moreira RA; Oliveira HD
    Carbohydr Polym; 2020 Aug; 242():116382. PubMed ID: 32564854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-depth study of the changes in properties and molecular structure of cassava starch during resistant dextrin preparation.
    Trithavisup K; Krusong K; Tananuwong K
    Food Chem; 2019 Nov; 297():124996. PubMed ID: 31253261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of waxy rice and tapioca starches on the physicochemical and sensory properties of white sauces enriched with functional fibre.
    Bortnowska G; Krudos A; Schube V; Krawczyńska W; Krzemińska N; Mojka K
    Food Chem; 2016 Jul; 202():31-9. PubMed ID: 26920263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of combination of dry heating and glucose addition on pasting and gelling behavior of starches.
    Lee SJ; Zhang C; Lim ST; Park EY
    Int J Biol Macromol; 2021 Jul; 183():1302-1308. PubMed ID: 34000317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular and Supermolecular Structure of Commercial Pyrodextrins.
    Le Thanh-Blicharz J; Błaszczak W; Szwengiel A; Paukszta D; Lewandowicz G
    J Food Sci; 2016 Sep; 81(9):C2135-42. PubMed ID: 27447364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification by α-d-glucan branching enzyme lowers the in vitro digestibility of starch from different sources.
    Li Y; Ren J; Liu J; Sun L; Wang Y; Liu B; Li C; Li Z
    Int J Biol Macromol; 2018 Feb; 107(Pt B):1758-1764. PubMed ID: 29030183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the effects and mechanism of incorporation of cross-linked/acetylated tapioca starches on the gel properties and in vitro digestibility of kung-wan.
    Wei S; Liang X; Kong B; Cao C; Zhang H; Liu Q; Wang H
    Meat Sci; 2023 Oct; 204():109265. PubMed ID: 37379703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.