BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 33183630)

  • 1. Patterned dextran ester films as a tailorable cell culture platform.
    Tchobanian A; Ceyssens F; Cóndor Salgado M; Van Oosterwyck H; Fardim P
    Carbohydr Polym; 2021 Jan; 252():117183. PubMed ID: 33183630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gradient and Patterned Protein Films Stabilized via Nanoimprint Lithography for Engineered Interactions with Cells.
    Wang LS; Duncan B; Tang R; Lee YW; Creran B; Elci SG; Zhu J; Yesilbag Tonga G; Doble J; Fessenden M; Bayat M; Nonnenmann S; Vachet RW; Rotello VM
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):42-46. PubMed ID: 28009164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased endothelial cell adhesion and elongation on micron-patterned nano-rough poly(dimethylsiloxane) films.
    Ranjan A; Webster TJ
    Nanotechnology; 2009 Jul; 20(30):305102. PubMed ID: 19581692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface modification of copolymerized films from three-armed biodegradable macromers - An analytical platform for modified tissue engineering scaffolds.
    Müller BM; Loth R; Hoffmeister PG; Zühl F; Kalbitzer L; Hacker MC; Schulz-Siegmund M
    Acta Biomater; 2017 Mar; 51():148-160. PubMed ID: 28069495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Meltable dextran esters as biocompatible and functional coating materials.
    Liebert T; Wotschadlo J; Laudeley P; Heinze T
    Biomacromolecules; 2011 Aug; 12(8):3107-13. PubMed ID: 21739976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of patterned dual thermoresponsive surfaces for the collective recovery as co-cultured cell sheets.
    Tsuda Y; Kikuchi A; Yamato M; Nakao A; Sakurai Y; Umezu M; Okano T
    Biomaterials; 2005 May; 26(14):1885-93. PubMed ID: 15576162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications.
    Sarkar S; Lee GY; Wong JY; Desai TA
    Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of a cell array on ultrathin hydrophilic polymer gels utilising electron beam irradiation and UV excimer laser ablation.
    Iwanaga S; Akiyama Y; Kikuchi A; Yamato M; Sakai K; Okano T
    Biomaterials; 2005 Sep; 26(26):5395-404. PubMed ID: 15814138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterned cell culture substrates created by hot embossing of tissue culture treated polystyrene.
    Brown A; Burke GA; Meenan BJ
    J Mater Sci Mater Med; 2013 Dec; 24(12):2797-807. PubMed ID: 23900705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the cell behavior on nano-/micro-patterned surfaces.
    Hasirci V; Pepe-Mooney BJ
    Nanomedicine (Lond); 2012 Sep; 7(9):1375-89. PubMed ID: 22812706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a biodegradable, temperature-sensitive dextran-based polymer as a cell-detaching substrate.
    Sun G; Kusuma S; Gerecht S
    Macromol Biosci; 2012 Jan; 12(1):21-8. PubMed ID: 22083795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Films of dextran-graft-polybutylmethacrylate to enhance endothelialization of materials.
    Derkaoui SM; Labbé A; Purnama A; Gueguen V; Barbaud C; Avramoglou T; Letourneur D
    Acta Biomater; 2010 Sep; 6(9):3506-13. PubMed ID: 20371388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dextran grafting on PTFE surface for cardiovascular applications.
    Michel EC; Montaño-Machado V; Chevallier P; Labbé-Barrère A; Letourneur D; Mantovani D
    Biomatter; 2014; 4():e28805. PubMed ID: 25482414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating protein attraction and adhesion to biomaterials with the atomic force microscope.
    Wang MS; Palmer LB; Schwartz JD; Razatos A
    Langmuir; 2004 Aug; 20(18):7753-9. PubMed ID: 15323528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mini-review: Cell response to microscale, nanoscale, and hierarchical patterning of surface structure.
    Jeon H; Simon CG; Kim G
    J Biomed Mater Res B Appl Biomater; 2014 Oct; 102(7):1580-94. PubMed ID: 24678035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of novel 2D and 3D biointerfaces using self-organization to control cell behavior.
    Tanaka M
    Biochim Biophys Acta; 2011 Mar; 1810(3):251-8. PubMed ID: 21029767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteoblast alignment, elongation and migration on grooved polystyrene surfaces patterned by Langmuir-Blodgett lithography.
    Lenhert S; Meier MB; Meyer U; Chi L; Wiesmann HP
    Biomaterials; 2005 Feb; 26(5):563-70. PubMed ID: 15276364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale.
    Chung TW; Liu DZ; Wang SY; Wang SS
    Biomaterials; 2003 Nov; 24(25):4655-61. PubMed ID: 12951008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical and physical modifications to poly(dimethylsiloxane) surfaces affect adhesion of Caco-2 cells.
    Wang L; Sun B; Ziemer KS; Barabino GA; Carrier RL
    J Biomed Mater Res A; 2010 Jun; 93(4):1260-71. PubMed ID: 19827104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions at scaffold interfaces: Effect of surface chemistry, structural attributes and bioaffinity.
    Dave K; Gomes VG
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110078. PubMed ID: 31546353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.