These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33183804)

  • 21. Integral use of sugarcane vinasse for biomass production of actinobacteria: Potential application in soil remediation.
    Aparicio JD; Benimeli CS; Almeida CA; Polti MA; Colin VL
    Chemosphere; 2017 Aug; 181():478-484. PubMed ID: 28460294
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial variability of soil potassium in sugarcane areas subjected to the application of vinasse.
    De Carvalho LA; Meurer I; Da Silva Junior CA; Santos CF; Libardi PL
    An Acad Bras Cienc; 2014 Dec; 86(4):1999-2012. PubMed ID: 25590735
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biochar decreases dissolved organic carbon but not nitrate leaching in relation to vinasse application in a Brazilian sugarcane soil.
    Eykelbosh AJ; Johnson MS; Couto EG
    J Environ Manage; 2015 Feb; 149():9-16. PubMed ID: 25463566
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ecotoxicological characterization of sugarcane vinasses when applied to tropical soils.
    Alves PR; Natal-da-Luz T; Sousa JP; Cardoso EJ
    Sci Total Environ; 2015 Sep; 526():222-32. PubMed ID: 25933292
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of sugar cane vinasse on the sorption and degradation of herbicides in soil under controlled conditions.
    Lourencetti C; De Marchi MR; Ribeiro ML
    J Environ Sci Health B; 2012; 47(10):949-58. PubMed ID: 22938579
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sugarcane vinasse and microalgal biomass in the production of pectin particles as an alternative soil fertilizer.
    Bettani SR; de Oliveira Ragazzo G; Leal Santos N; Kieckbusch TG; Gaspar Bastos R; Soares MR; Altenhofen da Silva M
    Carbohydr Polym; 2019 Jan; 203():322-330. PubMed ID: 30318219
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vinasse application to sugar cane fields. Effect on the unsaturated zone and groundwater at Valle del Cauca (Colombia).
    Ortegón GP; Arboleda FM; Candela L; Tamoh K; Valdes-Abellan J
    Sci Total Environ; 2016 Jan; 539():410-419. PubMed ID: 26372944
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acidobacteria Subgroups and Their Metabolic Potential for Carbon Degradation in Sugarcane Soil Amended With Vinasse and Nitrogen Fertilizers.
    de Chaves MG; Silva GGZ; Rossetto R; Edwards RA; Tsai SM; Navarrete AA
    Front Microbiol; 2019; 10():1680. PubMed ID: 31417506
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vinasse from sugarcane bagasse (hemicellulose) acid hydrolysate and molasses supplemented: biodegradability and toxicity.
    Candido JP; Almeida ÉC; de Oliveira Leite DN; Brienzo M; de Franceschi de Angelis D
    Ecotoxicology; 2021 Jul; 30(5):818-827. PubMed ID: 33856614
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nitrous Oxide and Methane Fluxes Following Ammonium Sulfate and Vinasse Application on Sugar Cane Soil.
    Paredes Dda S; Alves BJ; dos Santos MA; Bolonhezi D; Sant'Anna SA; Urquiaga S; Lima MA; Boddey RM
    Environ Sci Technol; 2015 Sep; 49(18):11209-17. PubMed ID: 26295867
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fire lead to disturbance on organic carbon under sugarcane cultivation but is recovered by amendment with vinasse.
    Dos Santos OAQ; Tavares OCH; García AC; Rossi CQ; de Moura OVT; Pereira W; da Silva Rodrigues Pinto LA; Berbara RLL; Pereira MG
    Sci Total Environ; 2020 Oct; 739():140063. PubMed ID: 32758952
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Validation by Molecular Dynamics of the Major Components of Sugarcane Vinasse, On a Surface of Calcium Carbonate (Calcite).
    Rojas Álvarez OE; Nicolás Vázquez MI; Oñate-Garzón J; Arango CA
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33919518
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vinasse as a substrate for inoculant culture and soil fertigation: Advancing the circular and green economy.
    Torres MA; Valdez AL; Angelicola MV; Raimondo EE; Pajot HF; Nieto-Peñalver CG
    Sci Total Environ; 2023 Aug; 887():164014. PubMed ID: 37182775
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potassium adsorption in soil cultivated with sugarcane.
    Freitas JMAS; Netto AM; Corrêa MM; Xavier BTL; Assis FX
    An Acad Bras Cienc; 2018; 90(1):541-555. PubMed ID: 29044317
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recycling organic residues in agriculture impacts soil-borne microbial community structure, function and N
    Suleiman AKA; Lourenço KS; Pitombo LM; Mendes LW; Roesch LFW; Pijl A; Carmo JB; Cantarella H; Kuramae EE
    Sci Total Environ; 2018 Aug; 631-632():1089-1099. PubMed ID: 29727935
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of Vinasse Application in the Structure and Composition of the Bacterial Community of the Soil under Sugarcane Cultivation.
    Omori WP; de Camargo AF; Goulart KC; Lemos EG; de Souza JA
    Int J Microbiol; 2016; 2016():2349514. PubMed ID: 27528875
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Seasonal characterization of sugarcane vinasse: Assessing environmental impacts from fertirrigation and the bioenergy recovery potential through biodigestion.
    Fuess LT; Garcia ML; Zaiat M
    Sci Total Environ; 2018 Sep; 634():29-40. PubMed ID: 29626768
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional responses of Hyalella meinerti after exposure to environmentally realistic concentrations of 2,4-D, fipronil, and vinasse (individually and in mixture).
    Pinto TJDS; Freitas JS; Moreira RA; Silva LCMD; Yoshii MPC; Lopes LFP; Goulart BV; Vanderlei MR; Athayde DB; Fraga PD; Ogura AP; Schiesari L; Montagner CC; Daam MA; Espindola ELG
    Aquat Toxicol; 2021 Feb; 231():105712. PubMed ID: 33340833
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monitoring priority substances, other organic contaminants and heavy metals in a volcanic aquifer from different sources and hydrological processes.
    Estevez E; Cabrera Mdel C; Fernández-Vera JR; Molina-Díaz A; Robles-Molina J; Palacios-Díaz Mdel P
    Sci Total Environ; 2016 May; 551-552():186-96. PubMed ID: 26874774
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of sugarcane vinasse and EDTA on cadmium phytoextraction by two saltbush plants.
    Eissa MA
    Environ Sci Pollut Res Int; 2016 May; 23(10):10247-54. PubMed ID: 26884237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.