These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 33183870)
1. Potential ability of different types of cyclodextrins to modulate the interaction between bovine serum albumin and 1-hydroxypyrene. Zhang J; Zhu Y; Zhang Y Food Chem; 2021 May; 343():128516. PubMed ID: 33183870 [TBL] [Abstract][Full Text] [Related]
2. Interactions of pyrene and/or 1-hydroxypyrene with bovine serum albumin based on EEM-PARAFAC combined with molecular docking. Zhang J; Chen L; Liu D; Zhu Y; Zhang Y Talanta; 2018 Aug; 186():497-505. PubMed ID: 29784393 [TBL] [Abstract][Full Text] [Related]
3. Study on the molecular interactions of hydroxylated polycyclic aromatic hydrocarbons with catalase using multi-spectral methods combined with molecular docking. Zhang J; Chen L; Zhu Y; Zhang Y Food Chem; 2020 Mar; 309():125743. PubMed ID: 31699563 [TBL] [Abstract][Full Text] [Related]
4. Förster resonance energy transfer between pyrene and bovine serum albumin: effect of the hydrophobic pockets of cyclodextrins. Maity A; Mukherjee P; Das T; Ghosh P; Purkayastha P Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jun; 92():382-7. PubMed ID: 22446788 [TBL] [Abstract][Full Text] [Related]
5. 3,6-diHydroxyflavone/bovine serum albumin interaction in cyclodextrin medium: absorption and emission monitoring. Voicescu M; Bandula R Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 138():628-36. PubMed ID: 25541401 [TBL] [Abstract][Full Text] [Related]
6. Hydroxylated polycyclic aromatic hydrocarbons possess inhibitory activity against alpha-glucosidase: An in vitro study using multispectroscopic techniques and molecular docking. Zhang J Spectrochim Acta A Mol Biomol Spectrosc; 2023 Apr; 291():122366. PubMed ID: 36689906 [TBL] [Abstract][Full Text] [Related]
7. Macromolecular recognition: discrimination between human and bovine serum albumins by cyclodextrins. Oi W; Isobe M; Hashidzume A; Harada A Macromol Rapid Commun; 2011 Mar; 32(6):501-5. PubMed ID: 21433206 [TBL] [Abstract][Full Text] [Related]
8. Interaction of pirenzepine with bovine serum albumin and effect of β-cyclodextrin on binding: A biophysical and molecular docking approach. Rahman Y; Afrin S; Tabish M Arch Biochem Biophys; 2018 Aug; 652():27-37. PubMed ID: 29908138 [TBL] [Abstract][Full Text] [Related]
9. Interactions between hydroxylated polycyclic aromatic hydrocarbons and serum albumins: multispectral and molecular docking analyses. Li MS; Zhang J; Zhu YX; Zhang Y Luminescence; 2022 Nov; 37(11):1972-1981. PubMed ID: 36098937 [TBL] [Abstract][Full Text] [Related]
10. Mechanism evaluation of the interactions between flavonoids and bovine serum albumin based on multi-spectroscopy, molecular docking and Q-TOF HR-MS analyses. Fu L; Sun Y; Ding L; Wang Y; Gao Z; Wu Z; Wang S; Li W; Bi Y Food Chem; 2016 Jul; 203():150-157. PubMed ID: 26948600 [TBL] [Abstract][Full Text] [Related]
11. Effect of triazole-tryptophan hybrid on the conformation stability of bovine serum albumin. Aneja B; Kumari M; Azam A; Kumar A; Abid M; Patel R Luminescence; 2018 May; 33(3):464-474. PubMed ID: 29314579 [TBL] [Abstract][Full Text] [Related]
12. New insight into the binding interaction of hydroxylated carbon nanotubes with bovine serum albumin. Guan Y; Zhang H; Wang Y Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():556-63. PubMed ID: 24508894 [TBL] [Abstract][Full Text] [Related]
13. Combined spectroscopies and molecular docking approach to characterizing the binding interaction of enalapril with bovine serum albumin. Pan DQ; Jiang M; Liu TT; Wang Q; Shi JH Luminescence; 2017 Jun; 32(4):481-490. PubMed ID: 27550396 [TBL] [Abstract][Full Text] [Related]
14. Chiral discrimination between D- and L-tryptophan based on the alteration of the fluorescence lifetimes by the chiral additives. Wei Y; Wang S; Shuang S; Dong C Talanta; 2010 Jun; 81(4-5):1800-5. PubMed ID: 20441976 [TBL] [Abstract][Full Text] [Related]
15. Investigation on the interaction of pyrene with bovine serum albumin using spectroscopic methods. Xu C; Gu J; Ma X; Dong T; Meng X Spectrochim Acta A Mol Biomol Spectrosc; 2014 May; 125():391-5. PubMed ID: 24566118 [TBL] [Abstract][Full Text] [Related]
16. Interaction between an (-)-epigallocatechin-3-gallate-copper complex and bovine serum albumin: Fluorescence, circular dichroism, HPLC, and docking studies. Zhang L; Liu Y; Wang Y Food Chem; 2019 Dec; 301():125294. PubMed ID: 31382111 [TBL] [Abstract][Full Text] [Related]
17. Insights into cyclodextrin-modulated interactions between protein and surfactant at specific and nonspecific binding stages. Liu Y; Liu Y; Guo R J Colloid Interface Sci; 2010 Nov; 351(1):180-9. PubMed ID: 20701921 [TBL] [Abstract][Full Text] [Related]
18. Exploring the binding mechanism of 5-hydroxy-3',4',7-trimethoxyflavone with bovine serum albumin: Spectroscopic and computational approach. Sudha A; Srinivasan P; Thamilarasan V; Sengottuvelan N Spectrochim Acta A Mol Biomol Spectrosc; 2016 Mar; 157():170-181. PubMed ID: 26773261 [TBL] [Abstract][Full Text] [Related]
19. The binding mechanism between cyclodextrins and pullulanase: A molecular docking, isothermal titration calorimetry, circular dichroism and fluorescence study. Li X; Bai Y; Ji H; Jin Z Food Chem; 2020 Aug; 321():126750. PubMed ID: 32278273 [TBL] [Abstract][Full Text] [Related]
20. Spectroscopic and molecular docking studies of binding interaction of gefitinib, lapatinib and sunitinib with bovine serum albumin (BSA). Shen GF; Liu TT; Wang Q; Jiang M; Shi JH J Photochem Photobiol B; 2015 Dec; 153():380-90. PubMed ID: 26555641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]