BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33184032)

  • 1. Lateralized alpha activity and slow potential shifts over visual cortex track the time course of both endogenous and exogenous orienting of attention.
    Keefe JM; Störmer VS
    Neuroimage; 2021 Jan; 225():117495. PubMed ID: 33184032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Salient, Irrelevant Sounds Reflexively Induce Alpha Rhythm Desynchronization in Parallel with Slow Potential Shifts in Visual Cortex.
    Störmer V; Feng W; Martinez A; McDonald J; Hillyard S
    J Cogn Neurosci; 2016 Mar; 28(3):433-45. PubMed ID: 26696295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A lateralized alpha-band marker of the interference of exogenous attention over endogenous attention.
    Landry M; da Silva Castanheira J; Raz A; Baillet S; Sackur J
    Cereb Cortex; 2024 Jan; 34(1):. PubMed ID: 38044466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of working memory load on electrophysiological markers of visuospatial orienting in a spatial cueing task simulating a traffic situation.
    Vossen AY; Ross V; Jongen EM; Ruiter RA; Smulders FT
    Psychophysiology; 2016 Feb; 53(2):237-51. PubMed ID: 26524126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involuntary orienting of attention to sight or sound relies on similar neural biasing mechanisms in early visual processing.
    Störmer VS; McDonald JJ; Hillyard SA
    Neuropsychologia; 2019 Sep; 132():107122. PubMed ID: 31207264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. No Evidence for a Role of Spatially Modulated α-Band Activity in Tactile Remapping and Short-Latency, Overt Orienting Behavior.
    Ossandón JP; König P; Heed T
    J Neurosci; 2020 Nov; 40(47):9088-9102. PubMed ID: 33087476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolating event-related potential components associated with voluntary control of visuo-spatial attention.
    McDonald JJ; Green JJ
    Brain Res; 2008 Aug; 1227():96-109. PubMed ID: 18621037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lateralized Suppression of Alpha-Band EEG Activity As a Mechanism of Target Processing.
    Bacigalupo F; Luck SJ
    J Neurosci; 2019 Jan; 39(5):900-917. PubMed ID: 30523067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Hemispheric Distribution of α-Band EEG Activity During Orienting of Attention in Patients with Reduced Awareness of the Left Side of Space (Spatial Neglect).
    Lasaponara S; Pinto M; Aiello M; Tomaiuolo F; Doricchi F
    J Neurosci; 2019 May; 39(22):4332-4343. PubMed ID: 30902872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential functional roles of slow-wave and oscillatory-α activity in visual sensory cortex during anticipatory visual-spatial attention.
    Grent-'t-Jong T; Boehler CN; Kenemans JL; Woldorff MG
    Cereb Cortex; 2011 Oct; 21(10):2204-16. PubMed ID: 21372123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The strength of anticipatory spatial biasing predicts target discrimination at attended locations: a high-density EEG study.
    Kelly SP; Gomez-Ramirez M; Foxe JJ
    Eur J Neurosci; 2009 Dec; 30(11):2224-34. PubMed ID: 19930401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural processes underlying the orienting of attention without awareness.
    Giattino CM; Alam ZM; Woldorff MG
    Cortex; 2018 May; 102():14-25. PubMed ID: 28826603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two electrophysiological stages of spatial orienting towards fearful faces: early temporo-parietal activation preceding gain control in extrastriate visual cortex.
    Pourtois G; Thut G; Grave de Peralta R; Michel C; Vuilleumier P
    Neuroimage; 2005 May; 26(1):149-63. PubMed ID: 15862215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemisphere-specific, differential effects of lateralized, occipital-parietal α- versus γ-tACS on endogenous but not exogenous visual-spatial attention.
    Kasten FH; Wendeln T; Stecher HI; Herrmann CS
    Sci Rep; 2020 Jul; 10(1):12270. PubMed ID: 32703961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-modal orienting of exogenous attention results in visual-cortical facilitation, not suppression.
    Keefe JM; Pokta E; Störmer VS
    Sci Rep; 2021 May; 11(1):10237. PubMed ID: 33986384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophysiological correlates of stimulus-driven reorienting deficits after interference with right parietal cortex during a spatial attention task: a TMS-EEG study.
    Capotosto P; Corbetta M; Romani GL; Babiloni C
    J Cogn Neurosci; 2012 Dec; 24(12):2363-71. PubMed ID: 22905824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection.
    Thut G; Nietzel A; Brandt SA; Pascual-Leone A
    J Neurosci; 2006 Sep; 26(37):9494-502. PubMed ID: 16971533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multivariate analysis of EEG activity indexes contingent attentional capture.
    Munneke J; Fahrenfort JJ; Sutterer D; Theeuwes J; Awh E
    Neuroimage; 2021 Feb; 226():117562. PubMed ID: 33189931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attentional processes in typically developing children as revealed using brain event-related potentials and their source localization in Attention Network Test.
    Santhana Gopalan PR; Loberg O; Hämäläinen JA; Leppänen PHT
    Sci Rep; 2019 Feb; 9(1):2940. PubMed ID: 30814533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of emotional effects on spatial attention in the human visual cortex.
    Pourtois G; Vuilleumier P
    Prog Brain Res; 2006; 156():67-91. PubMed ID: 17015075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.