BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 33184104)

  • 1. Predicting unrecognized enhancer-mediated genome topology by an ensemble machine learning model.
    Tang L; Hill MC; Wang J; Wang J; Martin JF; Li M
    Genome Res; 2020 Dec; 30(12):1835-1845. PubMed ID: 33184104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-species analysis of enhancer logic using deep learning.
    Minnoye L; Taskiran II; Mauduit D; Fazio M; Van Aerschot L; Hulselmans G; Christiaens V; Makhzami S; Seltenhammer M; Karras P; Primot A; Cadieu E; van Rooijen E; Marine JC; Egidy G; Ghanem GE; Zon L; Wouters J; Aerts S
    Genome Res; 2020 Dec; 30(12):1815-1834. PubMed ID: 32732264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of significant chromatin contacts from HiChIP data by FitHiChIP.
    Bhattacharyya S; Chandra V; Vijayanand P; Ay F
    Nat Commun; 2019 Sep; 10(1):4221. PubMed ID: 31530818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions.
    Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S
    BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating distal and proximal information to predict gene expression via a densely connected convolutional neural network.
    Zeng W; Wang Y; Jiang R
    Bioinformatics; 2020 Jan; 36(2):496-503. PubMed ID: 31318408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrative machine learning framework for the identification of cell-specific enhancers from the human genome.
    Basith S; Hasan MM; Lee G; Wei L; Manavalan B
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34226917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary effusion lymphoma enhancer connectome links super-enhancers to dependency factors.
    Wang C; Zhang L; Ke L; Ding W; Jiang S; Li D; Narita Y; Hou I; Liang J; Li S; Xiao H; Gottwein E; Kaye KM; Teng M; Zhao B
    Nat Commun; 2020 Dec; 11(1):6318. PubMed ID: 33298918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iEnhancer-SKNN: a stacking ensemble learning-based method for enhancer identification and classification using sequence information.
    Wu H; Liu M; Zhang P; Zhang H
    Brief Funct Genomics; 2023 May; 22(3):302-311. PubMed ID: 36715222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. YY1 Is a Structural Regulator of Enhancer-Promoter Loops.
    Weintraub AS; Li CH; Zamudio AV; Sigova AA; Hannett NM; Day DS; Abraham BJ; Cohen MA; Nabet B; Buckley DL; Guo YE; Hnisz D; Jaenisch R; Bradner JE; Gray NS; Young RA
    Cell; 2017 Dec; 171(7):1573-1588.e28. PubMed ID: 29224777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A predictive modeling approach for cell line-specific long-range regulatory interactions.
    Roy S; Siahpirani AF; Chasman D; Knaack S; Ay F; Stewart R; Wilson M; Sridharan R
    Nucleic Acids Res; 2015 Oct; 43(18):8694-712. PubMed ID: 26338778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenomic model of cardiac enhancers with application to genome wide association studies.
    Sahu AD; Aniba R; Chang YP; Hannenhalli S
    Pac Symp Biocomput; 2013; ():92-102. PubMed ID: 23424115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational schemes for the prediction and annotation of enhancers from epigenomic assays.
    Whitaker JW; Nguyen TT; Zhu Y; Wildberg A; Wang W
    Methods; 2015 Jan; 72():86-94. PubMed ID: 25461775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EnContact: predicting enhancer-enhancer contacts using sequence-based deep learning model.
    Gan M; Li W; Jiang R
    PeerJ; 2019; 7():e7657. PubMed ID: 31565573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide maps of distal gene regulatory enhancers active in the human placenta.
    Zhang J; Simonti CN; Capra JA
    PLoS One; 2018; 13(12):e0209611. PubMed ID: 30589856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comprehensive revisit of the machine-learning tools developed for the identification of enhancers in the human genome.
    Phan LT; Oh C; He T; Manavalan B
    Proteomics; 2023 Jul; 23(13-14):e2200409. PubMed ID: 37021401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capturing large genomic contexts for accurately predicting enhancer-promoter interactions.
    Chen K; Zhao H; Yang Y
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35062021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predict long-range enhancer regulation based on protein-protein interactions between transcription factors.
    Wang H; Huang B; Wang J
    Nucleic Acids Res; 2021 Oct; 49(18):10347-10368. PubMed ID: 34570239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction-based approaches to characterize bidirectional promoters in the mammalian genome.
    Yang MQ; Elnitski LL
    BMC Genomics; 2008; 9 Suppl 1(Suppl 1):S2. PubMed ID: 18366609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrative prediction of gene expression with chromatin accessibility and conformation data.
    Schmidt F; Kern F; Schulz MH
    Epigenetics Chromatin; 2020 Feb; 13(1):4. PubMed ID: 32029002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-species enhancer prediction using machine learning.
    MacPhillamy C; Alinejad-Rokny H; Pitchford WS; Low WY
    Genomics; 2022 Sep; 114(5):110454. PubMed ID: 36030022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.