These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
347 related articles for article (PubMed ID: 33184287)
1. Molecular structure and interactions within amyloid-like fibrils formed by a low-complexity protein sequence from FUS. Lee M; Ghosh U; Thurber KR; Kato M; Tycko R Nat Commun; 2020 Nov; 11(1):5735. PubMed ID: 33184287 [TBL] [Abstract][Full Text] [Related]
2. Side Chain Hydrogen-Bonding Interactions within Amyloid-like Fibrils Formed by the Low-Complexity Domain of FUS: Evidence from Solid State Nuclear Magnetic Resonance Spectroscopy. Murray DT; Tycko R Biochemistry; 2020 Feb; 59(4):364-378. PubMed ID: 31895552 [TBL] [Abstract][Full Text] [Related]
3. Sequence Determines the Switch in the Fibril Forming Regions in the Low-Complexity FUS Protein and Its Variants. Kumar A; Chakraborty D; Mugnai ML; Straub JE; Thirumalai D J Phys Chem Lett; 2021 Sep; 12(37):9026-9032. PubMed ID: 34516126 [TBL] [Abstract][Full Text] [Related]
4. Structure of FUS Protein Fibrils and Its Relevance to Self-Assembly and Phase Separation of Low-Complexity Domains. Murray DT; Kato M; Lin Y; Thurber KR; Hung I; McKnight SL; Tycko R Cell; 2017 Oct; 171(3):615-627.e16. PubMed ID: 28942918 [TBL] [Abstract][Full Text] [Related]
5. RRM domain of ALS/FTD-causing FUS characteristic of irreversible unfolding spontaneously self-assembles into amyloid fibrils. Lu Y; Lim L; Song J Sci Rep; 2017 Apr; 7(1):1043. PubMed ID: 28432364 [TBL] [Abstract][Full Text] [Related]
6. Amyloid-Forming Segment Induces Aggregation of FUS-LC Domain from Phase Separation Modulated by Site-Specific Phosphorylation. Ding X; Sun F; Chen J; Chen L; Tobin-Miyaji Y; Xue S; Qiang W; Luo SZ J Mol Biol; 2020 Jan; 432(2):467-483. PubMed ID: 31805282 [TBL] [Abstract][Full Text] [Related]
7. Insights into the Atomistic Mechanisms of Phosphorylation in Disrupting Liquid-Liquid Phase Separation and Aggregation of the FUS Low-Complexity Domain. Lao Z; Dong X; Liu X; Li F; Chen Y; Tang Y; Wei G J Chem Inf Model; 2022 Jul; 62(13):3227-3238. PubMed ID: 35709363 [TBL] [Abstract][Full Text] [Related]
8. Molecular structure of an amyloid fibril formed by FUS low-complexity domain. Sun Y; Zhang S; Hu J; Tao Y; Xia W; Gu J; Li Y; Cao Q; Li D; Liu C iScience; 2022 Jan; 25(1):103701. PubMed ID: 35036880 [TBL] [Abstract][Full Text] [Related]
9. Automated picking of amyloid fibrils from cryo-EM images for helical reconstruction with RELION. Thurber KR; Yin Y; Tycko R J Struct Biol; 2021 Jun; 213(2):107736. PubMed ID: 33831509 [TBL] [Abstract][Full Text] [Related]
10. Conformational fluctuations and phases in fused in sarcoma (FUS) low-complexity domain. Thirumalai D; Kumar A; Chakraborty D; Straub JE; Mugnai ML Biopolymers; 2024 Mar; 115(2):e23558. PubMed ID: 37399327 [TBL] [Abstract][Full Text] [Related]
11. Modeling the effects of phosphorylation on phase separation of the FUS low-complexity domain. Li M; Chen G; Zhang Z Biophys J; 2023 Jul; 122(13):2636-2645. PubMed ID: 37211763 [TBL] [Abstract][Full Text] [Related]
12. Cryo-EM structure of amyloid fibrils formed by the entire low complexity domain of TDP-43. Li Q; Babinchak WM; Surewicz WK Nat Commun; 2021 Mar; 12(1):1620. PubMed ID: 33712624 [TBL] [Abstract][Full Text] [Related]
13. Atomic structures of FUS LC domain segments reveal bases for reversible amyloid fibril formation. Luo F; Gui X; Zhou H; Gu J; Li Y; Liu X; Zhao M; Li D; Li X; Liu C Nat Struct Mol Biol; 2018 Apr; 25(4):341-346. PubMed ID: 29610493 [TBL] [Abstract][Full Text] [Related]
15. Real-time observation of structure and dynamics during the liquid-to-solid transition of FUS LC. Berkeley RF; Kashefi M; Debelouchina GT Biophys J; 2021 Apr; 120(7):1276-1287. PubMed ID: 33607084 [TBL] [Abstract][Full Text] [Related]
16. Post-translational modification sites are present in hydrophilic cavities of alpha-synuclein, tau, FUS, and TDP-43 fibrils: A molecular dynamics study. Kochen NN; Seaney D; Vasandani V; Murray M; Braun AR; Sachs JN Proteins; 2024 Jul; 92(7):854-864. PubMed ID: 38458997 [TBL] [Abstract][Full Text] [Related]
17. Structures of brain-derived 42-residue amyloid-β fibril polymorphs with unusual molecular conformations and intermolecular interactions. Lee M; Yau WM; Louis JM; Tycko R Proc Natl Acad Sci U S A; 2023 Mar; 120(11):e2218831120. PubMed ID: 36893281 [TBL] [Abstract][Full Text] [Related]
18. Cryo-EM Structure of the Full-length hnRNPA1 Amyloid Fibril. Sharma K; Banerjee S; Savran D; Rajes C; Wiese S; Girdhar A; Schwierz N; Lee C; Shorter J; Schmidt M; Guo L; Fändrich M J Mol Biol; 2023 Sep; 435(18):168211. PubMed ID: 37481159 [TBL] [Abstract][Full Text] [Related]
19. Molecular structures of amyloid and prion fibrils: consensus versus controversy. Tycko R; Wickner RB Acc Chem Res; 2013 Jul; 46(7):1487-96. PubMed ID: 23294335 [TBL] [Abstract][Full Text] [Related]
20. Elucidating the reversible and irreversible self-assembly mechanisms of low-complexity aromatic-rich kinked peptides and steric zipper peptides. Lao Z; Tang Y; Dong X; Tan Y; Li X; Liu X; Li L; Guo C; Wei G Nanoscale; 2024 Feb; 16(8):4025-4038. PubMed ID: 38347806 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]