BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 33184362)

  • 1. Characterization of the ExoU activation mechanism using EPR and integrative modeling.
    Tessmer MH; DeCero SA; Del Alamo D; Riegert MO; Meiler J; Frank DW; Feix JB
    Sci Rep; 2020 Nov; 10(1):19700. PubMed ID: 33184362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperative Substrate-Cofactor Interactions and Membrane Localization of the Bacterial Phospholipase A
    Tessmer MH; Anderson DM; Buchaklian A; Frank DW; Feix JB
    J Biol Chem; 2017 Feb; 292(8):3411-3419. PubMed ID: 28069812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational Changes and Membrane Interaction of the Bacterial Phospholipase, ExoU: Characterization by Site-Directed Spin Labeling.
    Feix JB; Kohn S; Tessmer MH; Anderson DM; Frank DW
    Cell Biochem Biophys; 2019 Mar; 77(1):79-87. PubMed ID: 30047043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a ubiquitin-binding interface using Rosetta and DEER.
    Tessmer MH; Anderson DM; Pickrum AM; Riegert MO; Moretti R; Meiler J; Feix JB; Frank DW
    Proc Natl Acad Sci U S A; 2018 Jan; 115(3):525-530. PubMed ID: 29295930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induced conformational changes in the activation of the Pseudomonas aeruginosa type III toxin, ExoU.
    Benson MA; Komas SM; Schmalzer KM; Casey MS; Frank DW; Feix JB
    Biophys J; 2011 Mar; 100(5):1335-43. PubMed ID: 21354407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of the effector ExoU from
    Springer TI; Reid TE; Gies SL; Feix JB
    J Biol Chem; 2019 Dec; 294(50):19012-19021. PubMed ID: 31662432
    [No Abstract]   [Full Text] [Related]  

  • 7. Phosphatidylinositol 4,5-bisphosphate is a novel coactivator of the Pseudomonas aeruginosa cytotoxin ExoU.
    Tyson GH; Hauser AR
    Infect Immun; 2013 Aug; 81(8):2873-81. PubMed ID: 23716613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation Mechanism and Cellular Localization of Membrane-Anchored Alginate Polymerase in Pseudomonas aeruginosa.
    Moradali MF; Ghods S; Rehm BHA
    Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28258142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of the major ubiquitin-binding domain of the Pseudomonas aeruginosa ExoU A2 phospholipase.
    Anderson DM; Feix JB; Monroe AL; Peterson FC; Volkman BF; Haas AL; Frank DW
    J Biol Chem; 2013 Sep; 288(37):26741-52. PubMed ID: 23908356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo phospholipase activity of the Pseudomonas aeruginosa cytotoxin ExoU and protection of mammalian cells with phospholipase A2 inhibitors.
    Phillips RM; Six DA; Dennis EA; Ghosh P
    J Biol Chem; 2003 Oct; 278(42):41326-32. PubMed ID: 12915403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanism of action of the Pseudomonas aeruginosa-encoded type III cytotoxin, ExoU.
    Sato H; Frank DW; Hillard CJ; Feix JB; Pankhaniya RR; Moriyama K; Finck-Barbançon V; Buchaklian A; Lei M; Long RM; Wiener-Kronish J; Sawa T
    EMBO J; 2003 Jun; 22(12):2959-69. PubMed ID: 12805211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphatidylinositol 4,5-Bisphosphate-Dependent Oligomerization of the Pseudomonas aeruginosa Cytotoxin ExoU.
    Zhang A; Veesenmeyer JL; Hauser AR
    Infect Immun; 2018 Jan; 86(1):. PubMed ID: 28993456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ubiquitin and ubiquitin-modified proteins activate the Pseudomonas aeruginosa T3SS cytotoxin, ExoU.
    Anderson DM; Schmalzer KM; Sato H; Casey M; Terhune SS; Haas AL; Feix JB; Frank DW
    Mol Microbiol; 2011 Dec; 82(6):1454-67. PubMed ID: 22040088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of Loop L1 Dynamics for Substrate Capture and Catalysis in Pseudomonas aeruginosa d-Arginine Dehydrogenase.
    Ouedraogo D; Souffrant M; Vasquez S; Hamelberg D; Gadda G
    Biochemistry; 2017 May; 56(19):2477-2487. PubMed ID: 28445031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Replacing Arginine 33 for Alanine in the Hemophore HasA from Pseudomonas aeruginosa Causes Closure of the H32 Loop in the Apo-Protein.
    Kumar R; Qi Y; Matsumura H; Lovell S; Yao H; Battaile KP; Im W; Moënne-Loccoz P; Rivera M
    Biochemistry; 2016 May; 55(18):2622-31. PubMed ID: 27074415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and characterization of a NAD(P)H-dependent carbonyl reductase from Pseudomonas aeruginosa PAO1.
    Li S; Teng X; Su L; Mao G; Xu Y; Li T; Liu R; Zhang Q; Wang Y; Bartlam M
    FEBS Lett; 2017 Jun; 591(12):1785-1797. PubMed ID: 28524228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eukaryotic localization, activation and ubiquitinylation of a bacterial type III secreted toxin.
    Stirling FR; Cuzick A; Kelly SM; Oxley D; Evans TJ
    Cell Microbiol; 2006 Aug; 8(8):1294-309. PubMed ID: 16882033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ExoU is a potent intracellular phospholipase.
    Sato H; Frank DW
    Mol Microbiol; 2004 Sep; 53(5):1279-90. PubMed ID: 15387809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pseudomonas aeruginosa causes acute lung injury via the catalytic activity of the patatin-like phospholipase domain of ExoU.
    Pankhaniya RR; Tamura M; Allmond LR; Moriyama K; Ajayi T; Wiener-Kronish JP; Sawa T
    Crit Care Med; 2004 Nov; 32(11):2293-9. PubMed ID: 15640644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and Verification of Ubiquitin-Activated Bacterial Phospholipases.
    Tessmer MH; Anderson DM; Pickrum AM; Riegert MO; Frank DW
    J Bacteriol; 2019 Feb; 201(4):. PubMed ID: 30455285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.