These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33184389)

  • 1. Shifts in the developmental rate of spadefoot toad larvae cause decreased complexity of post-metamorphic pigmentation patterns.
    Hyeun-Ji L; Rendón MÁ; Liedtke HC; Gomez-Mestre I
    Sci Rep; 2020 Nov; 10(1):19624. PubMed ID: 33184389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different effects of accelerated development and enhanced growth on oxidative stress and telomere shortening in amphibian larvae.
    Burraco P; Díaz-Paniagua C; Gomez-Mestre I
    Sci Rep; 2017 Aug; 7(1):7494. PubMed ID: 28790317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Higher thyroid hormone receptor expression correlates with short larval periods in spadefoot toads and increases metamorphic rate.
    Hollar AR; Choi J; Grimm AT; Buchholz DR
    Gen Comp Endocrinol; 2011 Aug; 173(1):190-8. PubMed ID: 21651912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Larval plastic responses to warming and desiccation delay gonadal maturation in postmetamorphic spadefoot toads.
    Burraco P; Torres-Montoro JC; Gomez-Mestre I
    Evolution; 2023 Dec; 77(12):2687-2695. PubMed ID: 37793129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms and consequences of developmental acceleration in tadpoles responding to pond drying.
    Gomez-Mestre I; Kulkarni S; Buchholz DR
    PLoS One; 2013; 8(12):e84266. PubMed ID: 24358352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endocrine mechanisms underlying plasticity in metamorphic timing in spadefoot toads.
    Boorse GC; Denver RJ
    Integr Comp Biol; 2003 Nov; 43(5):646-57. PubMed ID: 21680473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of phenotypic plasticity and corticosterone in coping with pond drying conditions in yellow-bellied toad (Bombina variegata, Linnaeus 1758) tadpoles.
    Kijanović A; Vukov T; Mirč M; Mitrović A; Prokić MD; Petrović TG; Radovanović TB; Gavrilović BR; Despotović SG; Gavrić JP; Tomašević Kolarov N
    J Exp Zool A Ecol Integr Physiol; 2024 Aug; 341(7):753-765. PubMed ID: 38651613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Water Loss on New Mexico Spadefoot Toad (Spea multiplicata) Development, Spleen Cellularity, and Corticosterone Levels.
    Bagwill AL; Lovern MB; Worthington TA; Smith LM; McMurry ST
    J Exp Zool A Ecol Genet Physiol; 2016 Oct; 325(8):548-561. PubMed ID: 27714986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carry-over effects of the larval environment on post-metamorphic performance in two hylid frogs.
    Van Allen BG; Briggs VS; McCoy MW; Vonesh JR
    Oecologia; 2010 Dec; 164(4):891-8. PubMed ID: 20658150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opposite shifts in size at metamorphosis in response to larval and metamorph predators.
    Vonesh JR; Warkentin KM
    Ecology; 2006 Mar; 87(3):556-62. PubMed ID: 16602285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hormonal correlates of environmentally induced metamorphosis in the Western spadefoot toad, Scaphiopus hammondii.
    Denver RJ
    Gen Comp Endocrinol; 1998 Jun; 110(3):326-36. PubMed ID: 9593653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphology and metamorphosis of Eupsophus calcaratus tadpoles (Anura: Leptodactylidae).
    Vera Candioti MF; Ubeda C; Lavilla EO
    J Morphol; 2005 May; 264(2):161-77. PubMed ID: 15761818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Baseline corticosterone levels in spadefoot toads reflect alternate larval diets one year later.
    Ledón-Rettig CC; Lo KM; Lagon SR
    Gen Comp Endocrinol; 2023 Aug; 339():114291. PubMed ID: 37094616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Background matching through fast and reversible melanin-based pigmentation plasticity in tadpoles comes with morphological and antioxidant changes.
    Liedtke HC; Lopez-Hervas K; Galván I; Polo-Cavia N; Gomez-Mestre I
    Sci Rep; 2023 Jul; 13(1):12064. PubMed ID: 37495600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opposite and synergistic physiological responses to water acidity and predator cues in spadefoot toad tadpoles.
    Florencio M; Burraco P; Rendón MÁ; Díaz-Paniagua C; Gomez-Mestre I
    Comp Biochem Physiol A Mol Integr Physiol; 2020 Apr; 242():110654. PubMed ID: 31926298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary reduction of developmental plasticity in desert spadefoot toads.
    Kulkarni SS; Gomez-Mestre I; Moskalik CL; Storz BL; Buchholz DR
    J Evol Biol; 2011 Nov; 24(11):2445-55. PubMed ID: 21883613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental conditions experienced during the tadpole stage alter post-metamorphic glucocorticoid response to stress in an amphibian.
    Crespi EJ; Warne RW
    Integr Comp Biol; 2013 Dec; 53(6):989-1001. PubMed ID: 23922274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequential predator effects across three life stages of the African tree frog, Hyperolius spinigularis.
    Vonesh JR
    Oecologia; 2005 Mar; 143(2):280-90. PubMed ID: 15657758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variation in the hormonal stress response among larvae of three amphibian species.
    Belden LK; Wingfield JC; Kiesecker JM
    J Exp Zool A Ecol Genet Physiol; 2010 Oct; 313(8):524-31. PubMed ID: 20878751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphology of the prometamorphic larva of the spadefoot toad, Scaphiopus intermontanus (Anura: Pelobatidae), with an emphasis on the lateral line system and mouthparts.
    Hall JA; Larsen JH; Fitzner RE
    J Morphol; 2002 May; 252(2):114-30. PubMed ID: 11921040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.