These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 33184391)

  • 1. Prediction of vascular aging based on smartphone acquired PPG signals.
    Dall'Olio L; Curti N; Remondini D; Safi Harb Y; Asselbergs FW; Castellani G; Uh HW
    Sci Rep; 2020 Nov; 10(1):19756. PubMed ID: 33184391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep PPG: Large-Scale Heart Rate Estimation with Convolutional Neural Networks.
    Reiss A; Indlekofer I; Schmidt P; Van Laerhoven K
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31336894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blood Pressure Prediction by a Smartphone Sensor using Fully Convolutional Networks.
    Baek S; Jang J; Cho SH; Choi JM; Yoon S
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():188-191. PubMed ID: 33017961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Learning Approaches to Detect Atrial Fibrillation Using Photoplethysmographic Signals: Algorithms Development Study.
    Kwon S; Hong J; Choi EK; Lee E; Hostallero DE; Kang WJ; Lee B; Jeong ER; Koo BK; Oh S; Yi Y
    JMIR Mhealth Uhealth; 2019 Jun; 7(6):e12770. PubMed ID: 31199302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data-driven assessment of cardiovascular ageing through multisite photoplethysmography and electrocardiography.
    Chiarelli AM; Bianco F; Perpetuini D; Bucciarelli V; Filippini C; Cardone D; Zappasodi F; Gallina S; Merla A
    Med Eng Phys; 2019 Nov; 73():39-50. PubMed ID: 31358395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring of Heart Rate from Photoplethysmographic Signals Using a Samsung Galaxy Note8 in Underwater Environments.
    Askarian B; Jung K; Chong JW
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31248022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bidirectional Recurrent Auto-Encoder for Photoplethysmogram Denoising.
    Lee J; Sun S; Yang SM; Sohn JJ; Park J; Lee S; Kim HC
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2375-2385. PubMed ID: 30530376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PPG Signal Reconstruction Using Deep Convolutional Generative Adversarial Network.
    Wang Y; Azimi I; Kazemi K; Rahmani AM; Liljeberg P
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3387-3391. PubMed ID: 36086184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of Non-Invasive Blood Pressure Prediction from PPG and rPPG Signals Using Deep Learning.
    Schrumpf F; Frenzel P; Aust C; Osterhoff G; Fuchs M
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diagnostic assessment of a deep learning system for detecting atrial fibrillation in pulse waveforms.
    Poh MZ; Poh YC; Chan PH; Wong CK; Pun L; Leung WW; Wong YF; Wong MM; Chu DW; Siu CW
    Heart; 2018 Dec; 104(23):1921-1928. PubMed ID: 29853485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In obstructive sleep apnea patients, automatic determination of respiratory arrests by photoplethysmography signal and heart rate variability.
    Bozkurt MR; Uçar MK; Bozkurt F; Bilgin C
    Australas Phys Eng Sci Med; 2019 Dec; 42(4):959-979. PubMed ID: 31515685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-Related Changes in Blood Volume Pulse Wave at Fingers and Ears.
    Lin WH; Zheng D; Li G; Chen F
    IEEE J Biomed Health Inform; 2024 Sep; 28(9):5070-5080. PubMed ID: 37276108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brno University of Technology Smartphone PPG Database (BUT PPG): Annotated Dataset for PPG Quality Assessment and Heart Rate Estimation.
    Nemcova A; Vargova E; Smisek R; Marsanova L; Smital L; Vitek M
    Biomed Res Int; 2021; 2021():3453007. PubMed ID: 34532501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of Atrial Fibrillation Using a Ring-Type Wearable Device (CardioTracker) and Deep Learning Analysis of Photoplethysmography Signals: Prospective Observational Proof-of-Concept Study.
    Kwon S; Hong J; Choi EK; Lee B; Baik C; Lee E; Jeong ER; Koo BK; Oh S; Yi Y
    J Med Internet Res; 2020 May; 22(5):e16443. PubMed ID: 32348254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Normalization of photoplethysmography using deep neural networks for individual and group comparison.
    Kim JW; Choi SW
    Sci Rep; 2022 Feb; 12(1):3133. PubMed ID: 35210522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remote photoplethysmography with consumer smartphone reveals temporal differences between glabrous and nonglabrous skin: Pilot in vivo study.
    Burton T; Saiko G; Cao M; Douplik A
    J Biophotonics; 2023 Jan; 16(1):e202200187. PubMed ID: 36054679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heart rate estimation in PPG signals using Convolutional-Recurrent Regressor.
    Ismail S; Siddiqi I; Akram U
    Comput Biol Med; 2022 Jun; 145():105470. PubMed ID: 35381452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning-based photoplethysmography classification for peripheral arterial disease detection: a proof-of-concept study.
    Allen J; Liu H; Iqbal S; Zheng D; Stansby G
    Physiol Meas; 2021 Jun; 42(5):. PubMed ID: 33878743
    [No Abstract]   [Full Text] [Related]  

  • 19. Photoplethysmogram based vascular aging assessment using the deep convolutional neural network.
    Shin H; Noh G; Choi BM
    Sci Rep; 2022 Jul; 12(1):11377. PubMed ID: 35790836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signal Quality Assessment of PPG Signals using STFT Time-Frequency Spectra and Deep Learning Approaches.
    Chen J; Sun K; Sun Y; Li X
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1153-1156. PubMed ID: 34891492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.