BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 33184405)

  • 1. Transcriptome profiling and weighted gene co-expression network analysis of early floral development in Aquilegia coerulea.
    Min Y; Kramer EM
    Sci Rep; 2020 Nov; 10(1):19637. PubMed ID: 33184405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative live imaging of floral organ initiation and floral meristem termination in Aquilegia.
    Min Y; Conway SJ; Kramer EM
    Development; 2022 Feb; 149(4):. PubMed ID: 35175330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative transcriptomics of early petal development across four diverse species of Aquilegia reveal few genes consistently associated with nectar spur development.
    Ballerini ES; Kramer EM; Hodges SA
    BMC Genomics; 2019 Aug; 20(1):668. PubMed ID: 31438840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conserved roles for Polycomb Repressive Complex 2 in the regulation of lateral organ development in Aquilegia x coerulea 'Origami'.
    Gleason EJ; Kramer EM
    BMC Plant Biol; 2013 Nov; 13():185. PubMed ID: 24256402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Aquilegia FRUITFULL-like genes play key roles in leaf morphogenesis and inflorescence development.
    Pabón-Mora N; Sharma B; Holappa LD; Kramer EM; Litt A
    Plant J; 2013 Apr; 74(2):197-212. PubMed ID: 23294330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elaboration of B gene function to include the identity of novel floral organs in the lower eudicot Aquilegia.
    Kramer EM; Holappa L; Gould B; Jaramillo MA; Setnikov D; Santiago PM
    Plant Cell; 2007 Mar; 19(3):750-66. PubMed ID: 17400892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental and Molecular Changes Underlying the Vernalization-Induced Transition to Flowering in
    Sharma B; Batz TA; Kaundal R; Kramer EM; Sanders UR; Mellano VJ; Duhan N; Larson RB
    Genes (Basel); 2019 Sep; 10(10):. PubMed ID: 31546687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convergence, constraint and the role of gene expression during adaptive radiation: floral anthocyanins in Aquilegia.
    Whittall JB; Voelckel C; Kliebenstein DJ; Hodges SA
    Mol Ecol; 2006 Dec; 15(14):4645-57. PubMed ID: 17107490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the development and evolution of novel floral form in Aquilegia.
    Sharma B; Yant L; Hodges SA; Kramer EM
    Curr Opin Plant Biol; 2014 Feb; 17():22-7. PubMed ID: 24507490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative transcriptomic analysis reveals novel roles of transcription factors and hormones during the flowering induction and floral bud differentiation in sweet cherry trees (Prunus avium L. cv. Bing).
    Villar L; Lienqueo I; Llanes A; Rojas P; Perez J; Correa F; Sagredo B; Masciarelli O; Luna V; Almada R
    PLoS One; 2020; 15(3):e0230110. PubMed ID: 32163460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Within and between whorls: comparative transcriptional profiling of Aquilegia and Arabidopsis.
    Voelckel C; Borevitz JO; Kramer EM; Hodges SA
    PLoS One; 2010 Mar; 5(3):e9735. PubMed ID: 20352114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Aquilegia JAGGED homolog promotes proliferation of adaxial cell types in both leaves and stems.
    Min Y; Kramer EM
    New Phytol; 2017 Oct; 216(2):536-548. PubMed ID: 27864962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-Seq analysis of gene expression for floral development in crested wheatgrass (Agropyron cristatum L.).
    Zeng F; Biligetu B; Coulman B; Schellenberg MP; Fu YB
    PLoS One; 2017; 12(5):e0177417. PubMed ID: 28531235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular basis for three-dimensional elaboration of the Aquilegia petal spur.
    Yant L; Collani S; Puzey J; Levy C; Kramer EM
    Proc Biol Sci; 2015 Mar; 282(1803):20142778. PubMed ID: 25673682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome analysis and identification of genes associated with flower development in Rhododendron pulchrum Sweet (Ericaceae).
    Wang S; Li Z; Jin W; Fang Y; Yang Q; Xiang J
    Gene; 2018 Dec; 679():108-118. PubMed ID: 30176315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homologs of the STYLISH gene family control nectary development in Aquilegia.
    Min Y; Bunn JI; Kramer EM
    New Phytol; 2019 Jan; 221(2):1090-1100. PubMed ID: 30145791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sub- and neo-functionalization of APETALA3 paralogs have contributed to the evolution of novel floral organ identity in Aquilegia (columbine, Ranunculaceae).
    Sharma B; Kramer E
    New Phytol; 2013 Feb; 197(3):949-957. PubMed ID: 23278258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic architecture underlying variation in floral meristem termination in Aquilegia.
    Min Y; Ballerini ES; Edwards MB; Hodges SA; Kramer EM
    J Exp Bot; 2022 Oct; 73(18):6241-6254. PubMed ID: 35731618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tinkering with transcription factor networks for developmental robustness of Ranunculales flowers.
    Becker A
    Ann Bot; 2016 Apr; 117(5):845-58. PubMed ID: 27091506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Regulation of Temperature-Dependent Floral Induction in
    Leeggangers HA; Nijveen H; Bigas JN; Hilhorst HW; Immink RG
    Plant Physiol; 2017 Mar; 173(3):1904-1919. PubMed ID: 28104719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.