These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 33184527)
21. Geostatistical analysis and mapping of malaria risk in children under 5 using point-referenced prevalence data in Ghana. Yankson R; Anto EA; Chipeta MG Malar J; 2019 Mar; 18(1):67. PubMed ID: 30871551 [TBL] [Abstract][Full Text] [Related]
22. Bayesian modelling of geostatistical malaria risk data. Gosoniu L; Vounatsou P; Sogoba N; Smith T Geospat Health; 2006 Nov; 1(1):127-39. PubMed ID: 18686238 [TBL] [Abstract][Full Text] [Related]
23. Modeling geostatistical incomplete spatially correlated survival data with applications to COVID-19 mortality in Ghana. Allotey PA; Harel O Spat Stat; 2023 Apr; 54():100730. PubMed ID: 36844103 [TBL] [Abstract][Full Text] [Related]
24. Spatio-temporal variation of malaria hotspots in Central Senegal, 2008-2012. Dieng S; Ba EH; Cissé B; Sallah K; Guindo A; Ouedraogo B; Piarroux M; Rebaudet S; Piarroux R; Landier J; Sokhna C; Gaudart J BMC Infect Dis; 2020 Jun; 20(1):424. PubMed ID: 32552759 [TBL] [Abstract][Full Text] [Related]
25. A spatially discrete approximation to log-Gaussian Cox processes for modelling aggregated disease count data. Johnson O; Diggle P; Giorgi E Stat Med; 2019 Oct; 38(24):4871-4887. PubMed ID: 31452235 [TBL] [Abstract][Full Text] [Related]
26. Spatio-temporal distribution of soil-transmitted helminth infections in Brazil. Chammartin F; Guimarães LH; Scholte RG; Bavia ME; Utzinger J; Vounatsou P Parasit Vectors; 2014 Sep; 7():440. PubMed ID: 25230810 [TBL] [Abstract][Full Text] [Related]
27. Spatially explicit burden estimates of malaria in Tanzania: bayesian geostatistical modeling of the malaria indicator survey data. Gosoniu L; Msengwa A; Lengeler C; Vounatsou P PLoS One; 2012; 7(5):e23966. PubMed ID: 22649486 [TBL] [Abstract][Full Text] [Related]
28. Mapping malaria risk in Bangladesh using Bayesian geostatistical models. Reid H; Haque U; Clements AC; Tatem AJ; Vallely A; Ahmed SM; Islam A; Haque R Am J Trop Med Hyg; 2010 Oct; 83(4):861-7. PubMed ID: 20889880 [TBL] [Abstract][Full Text] [Related]
29. spBayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models. Finley AO; Banerjee S; Carlin BP J Stat Softw; 2007 Apr; 19(4):1-24. PubMed ID: 21494410 [TBL] [Abstract][Full Text] [Related]
30. Evaluating changes in the prevalence of female genital mutilation/cutting among 0-14 years old girls in Nigeria using data from multiple surveys: A novel Bayesian hierarchical spatio-temporal model. Nnanatu CC; Atilola G; Komba P; Mavatikua L; Moore Z; Matanda D; Obianwu O; Kandala NB PLoS One; 2021; 16(2):e0246661. PubMed ID: 33577614 [TBL] [Abstract][Full Text] [Related]
31. Estimation of malaria incidence in northern Namibia in 2009 using Bayesian conditional-autoregressive spatial-temporal models. Alegana VA; Atkinson PM; Wright JA; Kamwi R; Uusiku P; Katokele S; Snow RW; Noor AM Spat Spatiotemporal Epidemiol; 2013 Dec; 7():25-36. PubMed ID: 24238079 [TBL] [Abstract][Full Text] [Related]
32. MBGapp: A Shiny application for teaching model-based geostatistics to population health scientists. Johnson O; Fronterre C; Diggle PJ; Amoah B; Giorgi E PLoS One; 2021; 16(12):e0262145. PubMed ID: 34972193 [TBL] [Abstract][Full Text] [Related]
33. Spatial and temporal distribution of soil-transmitted helminth infection in sub-Saharan Africa: a systematic review and geostatistical meta-analysis. Karagiannis-Voules DA; Biedermann P; Ekpo UF; Garba A; Langer E; Mathieu E; Midzi N; Mwinzi P; Polderman AM; Raso G; Sacko M; Talla I; Tchuenté LA; Touré S; Winkler MS; Utzinger J; Vounatsou P Lancet Infect Dis; 2015 Jan; 15(1):74-84. PubMed ID: 25486852 [TBL] [Abstract][Full Text] [Related]
34. Adaptive geostatistical sampling enables efficient identification of malaria hotspots in repeated cross-sectional surveys in rural Malawi. Kabaghe AN; Chipeta MG; McCann RS; Phiri KS; van Vugt M; Takken W; Diggle P; Terlouw AD PLoS One; 2017; 12(2):e0172266. PubMed ID: 28196105 [TBL] [Abstract][Full Text] [Related]
35. Mapping ex ante risks of COVID-19 in Indonesia using a Bayesian geostatistical model on airport network data. Seufert JD; Python A; Weisser C; Cisneros E; Kis-Katos K; Kneib T J R Stat Soc Ser A Stat Soc; 2022 Jul; ():. PubMed ID: 35942194 [TBL] [Abstract][Full Text] [Related]
36. SpatialEpiApp: A Shiny web application for the analysis of spatial and spatio-temporal disease data. Moraga P Spat Spatiotemporal Epidemiol; 2017 Nov; 23():47-57. PubMed ID: 29108690 [TBL] [Abstract][Full Text] [Related]
37. A geostatistical state-space model of animal densities for stream networks. Hocking DJ; Thorson JT; O'Neil K; Letcher BH Ecol Appl; 2018 Oct; 28(7):1782-1796. PubMed ID: 29927021 [TBL] [Abstract][Full Text] [Related]
38. Using geovisual analytics in Google Earth to understand disease distribution: a case study of campylobacteriosis in the Czech Republic (2008-2012). Marek L; Tuček P; Pászto V Int J Health Geogr; 2015 Jan; 14():7. PubMed ID: 25628063 [TBL] [Abstract][Full Text] [Related]
40. A novel framework for spatio-temporal prediction of environmental data using deep learning. Amato F; Guignard F; Robert S; Kanevski M Sci Rep; 2020 Dec; 10(1):22243. PubMed ID: 33335159 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]