These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 33184652)

  • 21. Raptor wing morphing with flight speed.
    Cheney JA; Stevenson JPJ; Durston NE; Maeda M; Song J; Megson-Smith DA; Windsor SP; Usherwood JR; Bomphrey RJ
    J R Soc Interface; 2021 Jul; 18(180):20210349. PubMed ID: 34255986
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.
    Zheng L; Hedrick TL; Mittal R
    PLoS One; 2013; 8(1):e53060. PubMed ID: 23341923
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using physical models to study the gliding performance of extinct animals.
    Koehl MA; Evangelista D; Yang K
    Integr Comp Biol; 2011 Dec; 51(6):1002-18. PubMed ID: 21937667
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Animal flight dynamics I. Stability in gliding flight.
    Thomas AL; Taylor GK
    J Theor Biol; 2001 Oct; 212(3):399-424. PubMed ID: 11829360
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aerodynamic analysis of hummingbird-like hovering flight.
    Haider N; Shahzad A; Qadri MNM; Shams TA
    Bioinspir Biomim; 2021 Oct; 16(6):. PubMed ID: 34547732
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cruising the rain forest floor: butterfly wing shape evolution and gliding in ground effect.
    Cespedes A; Penz CM; DeVries PJ
    J Anim Ecol; 2015 May; 84(3):808-816. PubMed ID: 25484251
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioinspired wingtip devices: a pathway to improve aerodynamic performance during low Reynolds number flight.
    Lynch M; Mandadzhiev B; Wissa A
    Bioinspir Biomim; 2018 Mar; 13(3):036003. PubMed ID: 29388556
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aerodynamic flight performance in flap-gliding birds and bats.
    Muijres FT; Henningsson P; Stuiver M; Hedenström A
    J Theor Biol; 2012 Aug; 306():120-8. PubMed ID: 22726811
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wake analysis of aerodynamic components for the glide envelope of a jackdaw (Corvus monedula).
    KleinHeerenbrink M; Warfvinge K; Hedenström A
    J Exp Biol; 2016 May; 219(Pt 10):1572-81. PubMed ID: 26994178
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wake analysis of drag components in gliding flight of a jackdaw (
    KleinHeerenbrink M; Hedenström A
    Interface Focus; 2017 Feb; 7(1):20160081. PubMed ID: 28163873
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physiological, aerodynamic and geometric constraints of flapping account for bird gaits, and bounding and flap-gliding flight strategies.
    Usherwood JR
    J Theor Biol; 2016 Nov; 408():42-52. PubMed ID: 27418386
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ontogeny of lift and drag production in ground birds.
    Heers AM; Tobalske BW; Dial KP
    J Exp Biol; 2011 Mar; 214(Pt 5):717-25. PubMed ID: 21307057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational investigation of wing-body interaction and its lift enhancement effect in hummingbird forward flight.
    Wang J; Ren Y; Li C; Dong H
    Bioinspir Biomim; 2019 Jun; 14(4):046010. PubMed ID: 31096194
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wing morphology, flight type and migration distance predict accumulated fuel load in birds.
    Vincze O; Vágási CI; Pap PL; Palmer C; Møller AP
    J Exp Biol; 2019 Jan; 222(Pt 1):. PubMed ID: 30446537
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gliding swifts attain laminar flow over rough wings.
    Lentink D; de Kat R
    PLoS One; 2014; 9(6):e99901. PubMed ID: 24964089
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New model of flap-gliding flight.
    Sachs G
    J Theor Biol; 2015 Jul; 377():110-6. PubMed ID: 25841702
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improvement of the aerodynamic performance by wing flexibility and elytra--hind wing interaction of a beetle during forward flight.
    Le TQ; Truong TV; Park SH; Quang Truong T; Ko JH; Park HC; Byun D
    J R Soc Interface; 2013 Aug; 10(85):20130312. PubMed ID: 23740486
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion.
    Sun M; Wu JH
    J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aerodynamic yawing moment characteristics of bird wings.
    Sachs G
    J Theor Biol; 2005 Jun; 234(4):471-8. PubMed ID: 15808868
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aerodynamic performance of the feathered dinosaur Microraptor and the evolution of feathered flight.
    Dyke G; de Kat R; Palmer C; van der Kindere J; Naish D; Ganapathisubramani B
    Nat Commun; 2013; 4():2489. PubMed ID: 24048346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.