These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 33184710)

  • 1. Body Anthropometry and Bone Strength Conjointly Determine the Risk of Hip Fracture in a Sideways Fall.
    Palanca M; Perilli E; Martelli S
    Ann Biomed Eng; 2021 May; 49(5):1380-1390. PubMed ID: 33184710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of trochanteric soft tissues to fall force estimates, the factor of risk, and prediction of hip fracture risk.
    Bouxsein ML; Szulc P; Munoz F; Thrall E; Sornay-Rendu E; Delmas PD
    J Bone Miner Res; 2007 Jun; 22(6):825-31. PubMed ID: 17352651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hip fracture and anthropometric variations: dominance among trochanteric soft tissue thickness, body height and body weight during sideways fall.
    Majumder S; Roychowdhury A; Pal S
    Clin Biomech (Bristol, Avon); 2013; 28(9-10):1034-40. PubMed ID: 24139746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Women and men with hip fractures have a longer femoral neck moment arm and greater impact load in a sideways fall.
    Wang Q; Teo JW; Ghasem-Zadeh A; Seeman E
    Osteoporos Int; 2009 Jul; 20(7):1151-6. PubMed ID: 18931818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of stress variations in single-stance and sideways fall using image-based finite element analysis.
    Faisal TR; Luo Y
    Biomed Mater Eng; 2016 May; 27(1):1-14. PubMed ID: 27175463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of hip fracture in sideways fall using a 3D finite element model of pelvis-femur-soft tissue complex with simplified representation of whole body.
    Majumder S; Roychowdhury A; Pal S
    Med Eng Phys; 2007 Dec; 29(10):1167-78. PubMed ID: 17270483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of the variations of fall induced hip fracture risk between right and left femurs using CT-based FEA.
    Faisal TR; Luo Y
    Biomed Eng Online; 2017 Oct; 16(1):116. PubMed ID: 28974207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors associated with proximal femur fracture determined in a large cadaveric cohort.
    Dragomir-Daescu D; Rossman TL; Rezaei A; Carlson KD; Kallmes DF; Skinner JA; Khosla S; Amin S
    Bone; 2018 Nov; 116():196-202. PubMed ID: 30096469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the internal reaction forces, energy absorption, and fracture in the hip during simulated sideways fall impact.
    Fleps I; Enns-Bray WS; Guy P; Ferguson SJ; Cripton PA; Helgason B
    PLoS One; 2018; 13(8):e0200952. PubMed ID: 30114192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A two-level subject-specific biomechanical model for improving prediction of hip fracture risk.
    Sarvi MN; Luo Y
    Clin Biomech (Bristol, Avon); 2015 Oct; 30(8):881-7. PubMed ID: 26126498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subject-specific ex vivo simulations for hip fracture risk assessment in sideways falls.
    Fleps I; Fung A; Guy P; Ferguson SJ; Helgason B; Cripton PA
    Bone; 2019 Aug; 125():36-45. PubMed ID: 31071479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of hip fracture risk prediction by femoral aBMD to experimentally measured factor of risk.
    Roberts BJ; Thrall E; Muller JA; Bouxsein ML
    Bone; 2010 Mar; 46(3):742-6. PubMed ID: 19854307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of trochanteric soft tissue thickness and hip impact velocity on hip fracture in sideways fall through 3D finite element simulations.
    Majumder S; Roychowdhury A; Pal S
    J Biomech; 2008 Sep; 41(13):2834-42. PubMed ID: 18718597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Explicit Finite Element Models Accurately Predict Subject-Specific and Velocity-Dependent Kinetics of Sideways Fall Impact.
    Fleps I; Guy P; Ferguson SJ; Cripton PA; Helgason B
    J Bone Miner Res; 2019 Oct; 34(10):1837-1850. PubMed ID: 31163090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of hip fracture risk by cross-sectional strain-energy derived from image-based beam model.
    Luo Y; Yang H
    Clin Biomech (Bristol, Avon); 2019 Mar; 63():48-53. PubMed ID: 30831432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of force attenuation properties of four different hip protectors under simulated falling conditions in the elderly: an in vitro biomechanical study.
    Kannus P; Parkkari J; Poutala J
    Bone; 1999 Aug; 25(2):229-35. PubMed ID: 10456390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofidelic finite element models for accurately classifying hip fracture in a retrospective clinical study of elderly women from the AGES Reykjavik cohort.
    Enns-Bray WS; Bahaloo H; Fleps I; Pauchard Y; Taghizadeh E; Sigurdsson S; Aspelund T; Büchler P; Harris T; Gudnason V; Ferguson SJ; Pálsson H; Helgason B
    Bone; 2019 Mar; 120():25-37. PubMed ID: 30240961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fall characteristics, functional mobility and bone mineral density as risk factors of hip fracture in the community-dwelling ambulatory elderly.
    Wei TS; Hu CH; Wang SH; Hwang KL
    Osteoporos Int; 2001 Dec; 12(12):1050-5. PubMed ID: 11846332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fall direction, bone mineral density, and function: risk factors for hip fracture in frail nursing home elderly.
    Greenspan SL; Myers ER; Kiel DP; Parker RA; Hayes WC; Resnick NM
    Am J Med; 1998 Jun; 104(6):539-45. PubMed ID: 9674716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain rate dependency of bovine trabecular bone under impact loading at sideways fall velocity.
    Enns-Bray WS; Ferguson SJ; Helgason B
    J Biomech; 2018 Jun; 75():46-52. PubMed ID: 29773425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.