BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33184936)

  • 1. Phosphate and phosphite have a differential impact on the proteome and phosphoproteome of Arabidopsis suspension cell cultures.
    Mehta D; Ghahremani M; Pérez-Fernández M; Tan M; Schläpfer P; Plaxton WC; Uhrig RG
    Plant J; 2021 Feb; 105(4):924-941. PubMed ID: 33184936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acclimation responses of Arabidopsis thaliana to sustained phosphite treatments.
    Berkowitz O; Jost R; Kollehn DO; Fenske R; Finnegan PM; O'Brien PA; Hardy GE; Lambers H
    J Exp Bot; 2013 Apr; 64(6):1731-43. PubMed ID: 23404904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiating phosphate-dependent and phosphate-independent systemic phosphate-starvation response networks in Arabidopsis thaliana through the application of phosphite.
    Jost R; Pharmawati M; Lapis-Gaza HR; Rossig C; Berkowitz O; Lambers H; Finnegan PM
    J Exp Bot; 2015 May; 66(9):2501-14. PubMed ID: 25697796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Proteome and Phosphoproteome Uncovers Candidate Proteins Associated With Vacuolar Phosphate Signal Multipled by Vacuolar Phosphate Transporter 1 (VPT1) in Arabidopsis.
    Zhang Y; Chen X; Feng J; Shen Y; Huang Y
    Mol Cell Proteomics; 2023 Jun; 22(6):100549. PubMed ID: 37076046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the Phosphoproteome and Metabolome Link Early Signaling Events to Rearrangement of Photosynthesis and Central Metabolism in Salinity and Oxidative Stress Response in Arabidopsis.
    Chen Y; Hoehenwarter W
    Plant Physiol; 2015 Dec; 169(4):3021-33. PubMed ID: 26471895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diurnal dynamics of the Arabidopsis rosette proteome and phosphoproteome.
    Uhrig RG; Echevarría-Zomeño S; Schlapfer P; Grossmann J; Roschitzki B; Koerber N; Fiorani F; Gruissem W
    Plant Cell Environ; 2021 Mar; 44(3):821-841. PubMed ID: 33278033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attenuation of phosphate starvation responses by phosphite in Arabidopsis.
    Ticconi CA; Delatorre CA; Abel S
    Plant Physiol; 2001 Nov; 127(3):963-72. PubMed ID: 11706178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane lipid alteration during phosphate starvation is regulated by phosphate signaling and auxin/cytokinin cross-talk.
    Kobayashi K; Masuda T; Takamiya K; Ohta H
    Plant J; 2006 Jul; 47(2):238-48. PubMed ID: 16762032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SPX4 Acts on PHR1-Dependent and -Independent Regulation of Shoot Phosphorus Status in Arabidopsis.
    Osorio MB; Ng S; Berkowitz O; De Clercq I; Mao C; Shou H; Whelan J; Jost R
    Plant Physiol; 2019 Sep; 181(1):332-352. PubMed ID: 31262954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomics identifies ubiquitin-proteasome targets and new roles for chromatin-remodeling in the Arabidopsis response to phosphate starvation.
    Iglesias J; Trigueros M; Rojas-Triana M; Fernández M; Albar JP; Bustos R; Paz-Ares J; Rubio V
    J Proteomics; 2013 Dec; 94():1-22. PubMed ID: 24012629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative expression profiling reveals a role of the root apoplast in local phosphate response.
    Hoehenwarter W; Mönchgesang S; Neumann S; Majovsky P; Abel S; Müller J
    BMC Plant Biol; 2016 Apr; 16():106. PubMed ID: 27121119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation dynamics of membrane proteins from Arabidopsis roots submitted to salt stress.
    Vialaret J; Di Pietro M; Hem S; Maurel C; Rossignol M; Santoni V
    Proteomics; 2014 May; 14(9):1058-70. PubMed ID: 24616185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphite disrupts the acclimation of Saccharomyces cerevisiae to phosphate starvation.
    McDonald AE; Niere JO; Plaxton WC
    Can J Microbiol; 2001 Nov; 47(11):969-78. PubMed ID: 11766057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation.
    Remy E; Cabrito TR; Batista RA; Teixeira MC; Sá-Correia I; Duque P
    New Phytol; 2012 Jul; 195(2):356-371. PubMed ID: 22578268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iTRAQ-based analysis of the Arabidopsis proteome reveals insights into the potential mechanisms of anthocyanin accumulation regulation in response to phosphate deficiency.
    Wang ZQ; Zhou X; Dong L; Guo J; Chen Y; Zhang Y; Wu L; Xu M
    J Proteomics; 2018 Jul; 184():39-53. PubMed ID: 29920325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphoproteome and proteome analyses reveal low-phosphate mediated plasticity of root developmental and metabolic regulation in maize (Zea mays L.).
    Li K; Xu C; Fan W; Zhang H; Hou J; Yang A; Zhang K
    Plant Physiol Biochem; 2014 Oct; 83():232-42. PubMed ID: 25190054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel strategy to uncover specific GO terms/phosphorylation pathways in phosphoproteomic data in Arabidopsis thaliana.
    Arico DS; Beati P; Wengier DL; Mazzella MA
    BMC Plant Biol; 2021 Dec; 21(1):592. PubMed ID: 34906086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport and compartmentation of phosphite in higher plant cells--kinetic and P nuclear magnetic resonance studies.
    Danova-Alt R; Dijkema C; DE Waard P; Köck M
    Plant Cell Environ; 2008 Oct; 31(10):1510-21. PubMed ID: 18657056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased phosphate transport of Arabidopsis thaliana Pht1;1 by site-directed mutagenesis of tyrosine 312 may be attributed to the disruption of homomeric interactions.
    Fontenot EB; Ditusa SF; Kato N; Olivier DM; Dale R; Lin WY; Chiou TJ; Macnaughtan MA; Smith AP
    Plant Cell Environ; 2015 Oct; 38(10):2012-22. PubMed ID: 25754174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Marine picocyanobacterial PhnD1 shows specificity for various phosphorus sources but likely represents a constitutive inorganic phosphate transporter.
    Shah BS; Ford BA; Varkey D; Mikolajek H; Orr C; Mykhaylyk V; Owens RJ; Paulsen IT
    ISME J; 2023 Jul; 17(7):1040-1051. PubMed ID: 37087502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.