These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
393 related articles for article (PubMed ID: 33185087)
1. Electronic Effect in a Ruthenium Catalyst Designed in Nanoporous N-Functionalized Carbon for Efficient Hydrogenation of Heteroarenes. Chandra D; Saini S; Bhattacharya S; Bhaumik A; Kamata K; Hara M ACS Appl Mater Interfaces; 2020 Nov; 12(47):52668-52677. PubMed ID: 33185087 [TBL] [Abstract][Full Text] [Related]
2. Acid-functionalized mesoporous carbon: an efficient support for ruthenium-catalyzed γ-valerolactone production. Villa A; Schiavoni M; Chan-Thaw CE; Fulvio PF; Mayes RT; Dai S; More KL; Veith GM; Prati L ChemSusChem; 2015 Aug; 8(15):2520-8. PubMed ID: 26089180 [TBL] [Abstract][Full Text] [Related]
3. Highly dispersed palladium nano-catalyst anchored on N-doped nanoporous carbon microspheres derived from chitosan for efficient and stable hydrogenation of quinoline. Zhu Q; Yin X; Tan Y; Wei D; Li Y; Pei X Int J Biol Macromol; 2024 Jan; 254(Pt 3):127949. PubMed ID: 37951427 [TBL] [Abstract][Full Text] [Related]
4. Organophilic worm-like ruthenium nanoparticles catalysts by the modification of CTAB on montmorillonite supports. Zhou L; Qi X; Jiang X; Zhou Y; Fu H; Chen H J Colloid Interface Sci; 2013 Feb; 392():201-205. PubMed ID: 23141762 [TBL] [Abstract][Full Text] [Related]
5. Ruthenium nanoparticles on nano-level-controlled carbon supports as highly effective catalysts for arene hydrogenation. Takasaki M; Motoyama Y; Higashi K; Yoon SH; Mochida I; Nagashima H Chem Asian J; 2007 Dec; 2(12):1524-33. PubMed ID: 17973283 [TBL] [Abstract][Full Text] [Related]
6. Formation and nitrile hydrogenation performance of Ru nanoparticles on a K-doped Al2O3 surface. Muratsugu S; Kityakarn S; Wang F; Ishiguro N; Kamachi T; Yoshizawa K; Sekizawa O; Uruga T; Tada M Phys Chem Chem Phys; 2015 Oct; 17(38):24791-802. PubMed ID: 26344789 [TBL] [Abstract][Full Text] [Related]
7. Hydrogenation of sulfoxides to sulfides under mild conditions using ruthenium nanoparticle catalysts. Mitsudome T; Takahashi Y; Mizugaki T; Jitsukawa K; Kaneda K Angew Chem Int Ed Engl; 2014 Aug; 53(32):8348-51. PubMed ID: 25087622 [TBL] [Abstract][Full Text] [Related]
8. Ru nanoparticles anchored on porous N-doped carbon nanospheres for efficient catalytic hydrogenation of Levulinic acid to γ-valerolactone under solvent-free conditions. Li B; Zhao H; Fang J; Li J; Gao W; Ma K; Liu C; Yang H; Ren X; Dong Z J Colloid Interface Sci; 2022 Oct; 623():905-914. PubMed ID: 35636298 [TBL] [Abstract][Full Text] [Related]
9. A well-fabricated Ru@C material derived from Ru/Zn-MOF with high activity and stability in the hydrogenation of 4-chloronitrobenzene. Wang Z; Zhang J; Yan L; Zhao B; Zheng L; Guo H; Yue Y; Han D; Chen X; Li R Phys Chem Chem Phys; 2023 Mar; 25(12):8556-8563. PubMed ID: 36883834 [TBL] [Abstract][Full Text] [Related]
10. An unusual chemoselective hydrogenation of quinoline compounds using supported gold catalysts. Ren D; He L; Yu L; Ding RS; Liu YM; Cao Y; He HY; Fan KN J Am Chem Soc; 2012 Oct; 134(42):17592-8. PubMed ID: 23020578 [TBL] [Abstract][Full Text] [Related]
11. Production of Sorbitol via Hydrogenation of Glucose over Ruthenium Coordinated with Amino Styrene-co-maleic Anhydride Polymer Encapsulated on Activated Carbon (Ru/ASMA@AC) Catalyst. Yang X; Li X; Zhao J; Liang J; Zhu J Molecules; 2023 Jun; 28(12):. PubMed ID: 37375385 [TBL] [Abstract][Full Text] [Related]
12. Highly enantioselective hydrogenation of quinolines using phosphine-free chiral cationic ruthenium catalysts: scope, mechanism, and origin of enantioselectivity. Wang T; Zhuo LG; Li Z; Chen F; Ding Z; He Y; Fan QH; Xiang J; Yu ZX; Chan AS J Am Chem Soc; 2011 Jun; 133(25):9878-91. PubMed ID: 21574550 [TBL] [Abstract][Full Text] [Related]
13. Selective Hydrogenation of 5-Hydroxymethylfurfural to 1-Hydroxy-2,5-hexanedione by Biochar-Supported Ru Catalysts. Longo L; Taghavi S; Ghedini E; Menegazzo F; Di Michele A; Cruciani G; Signoretto M ChemSusChem; 2022 Jul; 15(13):e202200437. PubMed ID: 35394696 [TBL] [Abstract][Full Text] [Related]
14. An Efficient and Reusable Embedded Ru Catalyst for the Hydrogenolysis of Levulinic Acid to γ-Valerolactone. Wei Z; Lou J; Su C; Guo D; Liu Y; Deng S ChemSusChem; 2017 Apr; 10(8):1720-1732. PubMed ID: 28328085 [TBL] [Abstract][Full Text] [Related]
15. Efficient Synthesis of Sugar Alcohols under Mild Conditions Using a Novel Sugar-Selective Hydrogenation Catalyst Based on Ruthenium Valence Regulation. Zhang XJ; Li HW; Bin W; Dou BJ; Chen DS; Cheng XP; Li M; Wang HY; Chen KQ; Jin LQ; Liu ZQ; Zheng YG J Agric Food Chem; 2020 Nov; 68(44):12393-12399. PubMed ID: 33095018 [TBL] [Abstract][Full Text] [Related]
16. In situ synthesis of Ru/RGO nanocomposites as a highly efficient catalyst for selective hydrogenation of halonitroaromatics. Fan G; Huang W; Wang C Nanoscale; 2013 Aug; 5(15):6819-25. PubMed ID: 23771438 [TBL] [Abstract][Full Text] [Related]
17. Hydrogenation of Ethylbenzene Over Ru/ Oh SK; Ku H; Han GB; Jeong B; Park YK; Jeon JK J Nanosci Nanotechnol; 2021 Jul; 21(7):4116-4120. PubMed ID: 33715756 [TBL] [Abstract][Full Text] [Related]
18. Water-soluble and reusable Ru-NHC catalyst for aqueous-phase transfer hydrogenation of quinolines with formic acid. Maji B; Bhandari A; Sadhukhan R; Choudhury J Dalton Trans; 2022 May; 51(21):8258-8265. PubMed ID: 35579118 [TBL] [Abstract][Full Text] [Related]
19. Direct conversion of cellulose into sorbitol catalyzed by a bifunctional catalyst. Li Z; Liu Y; Liu C; Wu S; Wei W Bioresour Technol; 2019 Feb; 274():190-197. PubMed ID: 30504102 [TBL] [Abstract][Full Text] [Related]
20. Asymmetric Hydrogenation of Quinoline Derivatives Catalyzed by Cationic Transition Metal Complexes of Chiral Diamine Ligands: Scope, Mechanism and Catalyst Recycling. Luo YE; He YM; Fan QH Chem Rec; 2016 Dec; 16(6):2693-2707. PubMed ID: 27555530 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]