These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 33185129)

  • 1. A model-based approach to predict neuromuscular control patterns that minimize ACL forces during jump landing.
    Heinrich D; van den Bogert AJ; Csapo R; Nachbauer W
    Comput Methods Biomech Biomed Engin; 2021 May; 24(6):612-622. PubMed ID: 33185129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting neuromuscular control patterns that minimize ACL forces during injury-prone jump-landing manoeuvres in downhill skiing using a musculoskeletal simulation model.
    Heinrich D; van den Bogert AJ; Nachbauer W
    Eur J Sport Sci; 2023 May; 23(5):703-713. PubMed ID: 35400304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between jump landing kinematics and peak ACL force during a jump in downhill skiing: a simulation study.
    Heinrich D; van den Bogert AJ; Nachbauer W
    Scand J Med Sci Sports; 2014 Jun; 24(3):e180-7. PubMed ID: 24118532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peak ACL force during jump landing in downhill skiing is less sensitive to landing height than landing position.
    Heinrich D; van den Bogert AJ; Nachbauer W
    Br J Sports Med; 2018 Sep; 52(17):1086-1090. PubMed ID: 29954827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematics and electromyography of landing preparation in vertical stop-jump: risks for noncontact anterior cruciate ligament injury.
    Chappell JD; Creighton RA; Giuliani C; Yu B; Garrett WE
    Am J Sports Med; 2007 Feb; 35(2):235-41. PubMed ID: 17092926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributions of the soleus and gastrocnemius muscles to the anterior cruciate ligament loading during single-leg landing.
    Mokhtarzadeh H; Yeow CH; Hong Goh JC; Oetomo D; Malekipour F; Lee PV
    J Biomech; 2013 Jul; 46(11):1913-20. PubMed ID: 23731572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volitional Spine Stabilization During a Drop Vertical Jump From Different Landing Heights: Implications for Anterior Cruciate Ligament Injury.
    Haddas R; Hooper T; James CR; Sizer PS
    J Athl Train; 2016 Dec; 51(12):1003-1012. PubMed ID: 27874298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of ski boot rear stiffness (SBRS) on maximal ACL force during injury prone landing movements in alpine ski racing: A study with a musculoskeletal simulation model.
    Eberle R; Heinrich D; Kaps P; Oberguggenberger M; Nachbauer W
    J Sports Sci; 2017 Jun; 35(12):1125-1133. PubMed ID: 27458775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vivo Anterior Cruciate Ligament Deformation During a Single-Legged Jump Measured by Magnetic Resonance Imaging and High-Speed Biplanar Radiography.
    Englander ZA; Baldwin EL; Smith WAR; Garrett WE; Spritzer CE; DeFrate LE
    Am J Sports Med; 2019 Nov; 47(13):3166-3172. PubMed ID: 31593498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer simulation of landing movement in downhill skiing: anterior cruciate ligament injuries.
    Gerritsen KG; Nachbauer W; van den Bogert AJ
    J Biomech; 1996 Jul; 29(7):845-54. PubMed ID: 8809615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing pre-activation of the quadriceps muscle protects the anterior cruciate ligament during the landing phase of a jump: an in vitro simulation.
    Hashemi J; Breighner R; Jang TH; Chandrashekar N; Ekwaro-Osire S; Slauterbeck JR
    Knee; 2010 Jun; 17(3):235-41. PubMed ID: 19864146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of estimated anterior cruciate ligament tension during a typical and flexed knee and hip drop landing using sagittal plane knee modeling.
    Southard J; Kernozek TW; Ragan R; Willson J
    Int J Sports Med; 2012 May; 33(5):381-5. PubMed ID: 22318556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elevated gastrocnemius forces compensate for decreased hamstrings forces during the weight-acceptance phase of single-leg jump landing: implications for anterior cruciate ligament injury risk.
    Morgan KD; Donnelly CJ; Reinbolt JA
    J Biomech; 2014 Oct; 47(13):3295-302. PubMed ID: 25218505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A numerical simulation approach to studying anterior cruciate ligament strains and internal forces among young recreational women performing valgus inducing stop-jump activities.
    Kar J; Quesada PM
    Ann Biomed Eng; 2012 Aug; 40(8):1679-91. PubMed ID: 22527014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drop-Jump Landing Varies With Baseline Neurocognition: Implications for Anterior Cruciate Ligament Injury Risk and Prevention.
    Herman DC; Barth JT
    Am J Sports Med; 2016 Sep; 44(9):2347-53. PubMed ID: 27474381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Timing of lower extremity frontal plane motion differs between female and male athletes during a landing task.
    Joseph MF; Rahl M; Sheehan J; MacDougall B; Horn E; Denegar CR; Trojian TH; Anderson JM; Kraemer WJ
    Am J Sports Med; 2011 Jul; 39(7):1517-21. PubMed ID: 21383083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplanar Loading of the Knee and Its Influence on Anterior Cruciate Ligament and Medial Collateral Ligament Strain During Simulated Landings and Noncontact Tears.
    Bates NA; Schilaty ND; Nagelli CV; Krych AJ; Hewett TE
    Am J Sports Med; 2019 Jul; 47(8):1844-1853. PubMed ID: 31150273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peak Lower Extremity Landing Kinematics in Dancers and Nondancers.
    Hansberger BL; Acocello S; Slater LV; Hart JM; Ambegaonkar JP
    J Athl Train; 2018 Apr; 53(4):379-385. PubMed ID: 29528687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative strain in the anterior cruciate ligament and medial collateral ligament during simulated jump landing and sidestep cutting tasks: implications for injury risk.
    Bates NA; Nesbitt RJ; Shearn JT; Myer GD; Hewett TE
    Am J Sports Med; 2015 Sep; 43(9):2259-69. PubMed ID: 26150588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical simulation of anterior cruciate ligament strain for sports injury prevention.
    Zhang Y; Liu G; Xie SQ
    Comput Biol Med; 2011 Mar; 41(3):159-63. PubMed ID: 21292250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.