These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33185273)

  • 21. Study of photodegradation and photooxidation of p-arsanilic acid in water solutions at pH = 7: kinetics and by-products.
    Czaplicka M; Jaworek K; Bąk M
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):16927-35. PubMed ID: 26109222
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multifunctional capacity of CoMnFe-LDH/LDO activated peroxymonosulfate for p-arsanilic acid removal and inorganic arsenic immobilization: Performance and surface-bound radical mechanism.
    Ye C; Deng J; Huai L; Cai A; Ling X; Guo H; Wang Q; Li X
    Sci Total Environ; 2022 Feb; 806(Pt 1):150379. PubMed ID: 34571222
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Complete arsenite removal from groundwater by UV activated potassium persulfate and iron oxide impregnated granular activated carbon.
    Mani P; Kim Y; Lakhera SK; Neppolian B; Choi H
    Chemosphere; 2021 Aug; 277():130225. PubMed ID: 34384167
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism, kinetics, and pathways of self-sensitized sunlight photodegradation of phenylarsonic compounds.
    Xie X; Hu Y; Cheng H
    Water Res; 2016 Jun; 96():136-47. PubMed ID: 27038583
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transformation of para arsanilic acid by manganese oxide: Adsorption, oxidation, and influencing factors.
    Joshi TP; Zhang G; Cheng H; Liu R; Liu H; Qu J
    Water Res; 2017 Jun; 116():126-134. PubMed ID: 28329708
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel transformation pathway of p-arsanilic acid in water by colloid ferric hydroxide under UVA light.
    Xu J; Wu Y; Ma M; Luo T; Xia J; Zhang X
    Environ Sci Pollut Res Int; 2022 Jan; 29(4):5043-5051. PubMed ID: 34415520
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of anion constituents of urine by inorganic capillary electrophoresis.
    Wildman BJ; Jackson PE; Jones WR; Alden PG
    J Chromatogr; 1991 Jun; 546(1-2):459-66. PubMed ID: 1885703
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Arsenic pollution of agricultural soils by concentrated animal feeding operations (CAFOs).
    Liu X; Zhang W; Hu Y; Hu E; Xie X; Wang L; Cheng H
    Chemosphere; 2015 Jan; 119():273-281. PubMed ID: 25036941
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan.
    Liao VH; Chu YJ; Su YC; Hsiao SY; Wei CC; Liu CW; Liao CM; Shen WC; Chang FJ
    J Contam Hydrol; 2011 Apr; 123(1-2):20-9. PubMed ID: 21216490
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intracellular interaction and metabolic fate of arsenite and arsenate in mice and rabbits.
    Vahter M; Marafante E
    Chem Biol Interact; 1983 Oct; 47(1):29-44. PubMed ID: 6640784
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adsorption kinetics and isotherms of arsenite and arsenate on hematite nanoparticles and aggregates.
    Dickson D; Liu G; Cai Y
    J Environ Manage; 2017 Jan; 186(Pt 2):261-267. PubMed ID: 27480915
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Arsenic speciation in arsenic-rich Brazilian soils from gold mining sites under anaerobic incubation.
    de Mello JW; Talbott JL; Scott J; Roy WR; Stucki JW
    Environ Sci Pollut Res Int; 2007 Sep; 14(6):388-96. PubMed ID: 17993222
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immobilization of arsenite and ferric iron by Acidithiobacillus ferrooxidans and its relevance to acid mine drainage.
    Duquesne K; Lebrun S; Casiot C; Bruneel O; Personné JC; Leblanc M; Elbaz-Poulichet F; Morin G; Bonnefoy V
    Appl Environ Microbiol; 2003 Oct; 69(10):6165-73. PubMed ID: 14532077
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Removal of arsenite and arsenate using hydrous ferric oxide incorporated into naturally occurring porous diatomite.
    Jang M; Min SH; Kim TH; Park JK
    Environ Sci Technol; 2006 Mar; 40(5):1636-43. PubMed ID: 16568781
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of ferrous iron on arsenate sorption to amorphous ferric hydroxide.
    Mukiibi M; Ela WP; Sáez AE
    Ann N Y Acad Sci; 2008 Oct; 1140():335-45. PubMed ID: 18991933
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Arsenite oxidation initiated by the UV photolysis of nitrite and nitrate.
    Kim DH; Lee J; Ryu J; Kim K; Choi W
    Environ Sci Technol; 2014 Apr; 48(7):4030-7. PubMed ID: 24617811
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monomethylarsonous acid (MMA(III)) is more toxic than arsenite in Chang human hepatocytes.
    Petrick JS; Ayala-Fierro F; Cullen WR; Carter DE; Vasken Aposhian H
    Toxicol Appl Pharmacol; 2000 Mar; 163(2):203-7. PubMed ID: 10698679
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal of arsenic from water: effect of calcium ions on As(III) removal in the KMnO(4)-Fe(II) process.
    Guan X; Ma J; Dong H; Jiang L
    Water Res; 2009 Dec; 43(20):5119-28. PubMed ID: 19201439
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accumulation, transformation, and release of inorganic arsenic by the freshwater cyanobacterium Microcystis aeruginosa.
    Wang Z; Luo Z; Yan C
    Environ Sci Pollut Res Int; 2013 Oct; 20(10):7286-95. PubMed ID: 23636594
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of humic acid on arsenic bioaccumulation and biotransformation to zebrafish: A comparative study between As(III) and As(V) exposure.
    Wang X; Liu L; Wang X; Ren J; Jia P; Fan W
    Environ Pollut; 2020 Jan; 256():113459. PubMed ID: 31708282
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.