These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33185294)

  • 1. The neural bases of spatial attention and perceptual rhythms.
    Gaillard C; Ben Hamed S
    Eur J Neurosci; 2022 Jun; 55(11-12):3209-3223. PubMed ID: 33185294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A theta rhythm in macaque visual cortex and its attentional modulation.
    Spyropoulos G; Bosman CA; Fries P
    Proc Natl Acad Sci U S A; 2018 Jun; 115(24):E5614-E5623. PubMed ID: 29848632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prefrontal attentional saccades explore space rhythmically.
    Gaillard C; Ben Hadj Hassen S; Di Bello F; Bihan-Poudec Y; VanRullen R; Ben Hamed S
    Nat Commun; 2020 Feb; 11(1):925. PubMed ID: 32066740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavioral oscillations in attention: rhythmic α pulses mediated through θ band.
    Song K; Meng M; Chen L; Zhou K; Luo H
    J Neurosci; 2014 Apr; 34(14):4837-44. PubMed ID: 24695703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct contributions of alpha and theta rhythms to perceptual and attentional sampling.
    Michel R; Dugué L; Busch NA
    Eur J Neurosci; 2022 Jun; 55(11-12):3025-3039. PubMed ID: 33609313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Rhythmic Theory of Attention.
    Fiebelkorn IC; Kastner S
    Trends Cogn Sci; 2019 Feb; 23(2):87-101. PubMed ID: 30591373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attentional sampling of visual and auditory objects is captured by theta-modulated neural activity.
    Plöchl M; Fiebelkorn I; Kastner S; Obleser J
    Eur J Neurosci; 2022 Jun; 55(11-12):3067-3082. PubMed ID: 34729843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulus-Driven Brain Rhythms within the Alpha Band: The Attentional-Modulation Conundrum.
    Keitel C; Keitel A; Benwell CSY; Daube C; Thut G; Gross J
    J Neurosci; 2019 Apr; 39(16):3119-3129. PubMed ID: 30770401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential sampling of visual objects during sustained attention.
    Jia J; Liu L; Fang F; Luo H
    PLoS Biol; 2017 Jun; 15(6):e2001903. PubMed ID: 28658261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detecting Unattended Stimuli Depends on the Phase of Prestimulus Neural Oscillations.
    Harris AM; Dux PE; Mattingley JB
    J Neurosci; 2018 Mar; 38(12):3092-3101. PubMed ID: 29459372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural Mechanisms of Sustained Attention Are Rhythmic.
    Helfrich RF; Fiebelkorn IC; Szczepanski SM; Lin JJ; Parvizi J; Knight RT; Kastner S
    Neuron; 2018 Aug; 99(4):854-865.e5. PubMed ID: 30138591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond time and space: The effect of a lateralized sustained attention task and brain stimulation on spatial and selective attention.
    Shalev N; De Wandel L; Dockree P; Demeyere N; Chechlacz M
    Cortex; 2018 Oct; 107():131-147. PubMed ID: 29061290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theta Rhythmic Neuronal Activity and Reaction Times Arising from Cortical Receptive Field Interactions during Distributed Attention.
    Kienitz R; Schmiedt JT; Shapcott KA; Kouroupaki K; Saunders RC; Schmid MC
    Curr Biol; 2018 Aug; 28(15):2377-2387.e5. PubMed ID: 30017481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theta burst stimulation improves overt visual search in spatial neglect independently of attentional load.
    Cazzoli D; Rosenthal CR; Kennard C; Zito GA; Hopfner S; Müri RM; Nyffeler T
    Cortex; 2015 Dec; 73():317-29. PubMed ID: 26547867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Dynamic Interplay within the Frontoparietal Network Underlies Rhythmic Spatial Attention.
    Fiebelkorn IC; Pinsk MA; Kastner S
    Neuron; 2018 Aug; 99(4):842-853.e8. PubMed ID: 30138590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct Neural Mechanisms of Spatial Attention and Expectation Guide Perceptual Inference in a Multisensory World.
    Zuanazzi A; Noppeney U
    J Neurosci; 2019 Mar; 39(12):2301-2312. PubMed ID: 30659086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional Dissociation of θ Oscillations in the Frontal and Visual Cortices and Their Long-Range Network during Sustained Attention.
    Han HB; Lee KE; Choi JH
    eNeuro; 2019; 6(6):. PubMed ID: 31685677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural entrainment and network resonance in support of top-down guided attention.
    Helfrich RF; Breska A; Knight RT
    Curr Opin Psychol; 2019 Oct; 29():82-89. PubMed ID: 30690228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain and Cognitive Mechanisms of Top-Down Attentional Control in a Multisensory World: Benefits of Electrical Neuroimaging.
    Matusz PJ; Turoman N; Tivadar RI; Retsa C; Murray MM
    J Cogn Neurosci; 2019 Mar; 31(3):412-430. PubMed ID: 30513045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attentional load and sensory competition in human vision: modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field.
    Schwartz S; Vuilleumier P; Hutton C; Maravita A; Dolan RJ; Driver J
    Cereb Cortex; 2005 Jun; 15(6):770-86. PubMed ID: 15459076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.