These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 33185769)

  • 1. Adaptive spatial working memory assessments for aging pet dogs.
    Van Bourg J; Gilchrist R; Wynne CDL
    Anim Cogn; 2021 May; 24(3):511-531. PubMed ID: 33185769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rapid serial reversal learning assessment for age-related cognitive deficits in pet dogs.
    Van Bourg J; Gunter LM; Wynne CDL
    Behav Processes; 2021 May; 186():104375. PubMed ID: 33722587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling for dogs' (Canis familiaris) use of nonmnemonic strategies in a spatial working memory task.
    Krichbaum S; Smith JG; Lazarowski L; Katz JS
    J Exp Psychol Anim Learn Cogn; 2021 Jul; 47(3):364-370. PubMed ID: 34618534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Testing a dynamic-field account of interactions between spatial attention and spatial working memory.
    Johnson JS; Spencer JP
    Atten Percept Psychophys; 2016 May; 78(4):1043-63. PubMed ID: 26810574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of age on measures of complex working memory span in the beagle dog (Canis familiaris) using two versions of a spatial list learning paradigm.
    Tapp PD; Siwak CT; Estrada J; Holowachuk D; Milgram NW
    Learn Mem; 2003; 10(2):148-60. PubMed ID: 12663753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Failure to engage spatial working memory contributes to age-related declines in visuomotor learning.
    Anguera JA; Reuter-Lorenz PA; Willingham DT; Seidler RD
    J Cogn Neurosci; 2011 Jan; 23(1):11-25. PubMed ID: 20146609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aging effects on discrimination learning, logical reasoning and memory in pet dogs.
    Wallis LJ; Virányi Z; Müller CA; Serisier S; Huber L; Range F
    Age (Dordr); 2016 Feb; 38(1):6. PubMed ID: 26728398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial reversal learning is impaired by age in pet dogs.
    Mongillo P; Araujo JA; Pitteri E; Carnier P; Adamelli S; Regolin L; Marinelli L
    Age (Dordr); 2013 Dec; 35(6):2273-82. PubMed ID: 23529504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Further evidence for the cholinergic hypothesis of aging and dementia from the canine model of aging.
    Araujo JA; Studzinski CM; Milgram NW
    Prog Neuropsychopharmacol Biol Psychiatry; 2005 Mar; 29(3):411-22. PubMed ID: 15795050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of a delayed non-matching to position task to model age-dependent cognitive decline in the dog.
    Adams B; Chan A; Callahan H; Siwak C; Tapp D; Ikeda-Douglas C; Atkinson P; Head E; Cotman CW; Milgram NW
    Behav Brain Res; 2000 Feb; 108(1):47-56. PubMed ID: 10680756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neither Cholinergic Nor Dopaminergic Enhancement Improve Spatial Working Memory Precision in Humans.
    Harewood Smith AN; Challa JA; Silver MA
    Front Neural Circuits; 2017; 11():94. PubMed ID: 29259546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cognitive correlates of α4β2 nicotinic acetylcholine receptors in mild Alzheimer's dementia.
    Sabri O; Meyer PM; Gräf S; Hesse S; Wilke S; Becker GA; Rullmann M; Patt M; Luthardt J; Wagenknecht G; Hoepping A; Smits R; Franke A; Sattler B; Tiepolt S; Fischer S; Deuther-Conrad W; Hegerl U; Barthel H; Schönknecht P; Brust P
    Brain; 2018 Jun; 141(6):1840-1854. PubMed ID: 29672680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ventral Midline Thalamus Is Critical for Hippocampal-Prefrontal Synchrony and Spatial Working Memory.
    Hallock HL; Wang A; Griffin AL
    J Neurosci; 2016 Aug; 36(32):8372-89. PubMed ID: 27511010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial learning and memory as a function of age in the dog.
    Head E; Mehta R; Hartley J; Kameka M; Cummings BJ; Cotman CW; Ruehl WW; Milgram NW
    Behav Neurosci; 1995 Oct; 109(5):851-8. PubMed ID: 8554710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulating the interference effect on spatial working memory by applying transcranial direct current stimulation over the right dorsolateral prefrontal cortex.
    Wu YJ; Tseng P; Chang CF; Pai MC; Hsu KS; Lin CC; Juan CH
    Brain Cogn; 2014 Nov; 91():87-94. PubMed ID: 25265321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Working memory binding and episodic memory formation in aging, mild cognitive impairment, and Alzheimer's dementia.
    van Geldorp B; Heringa SM; van den Berg E; Olde Rikkert MG; Biessels GJ; Kessels RP
    J Clin Exp Neuropsychol; 2015; 37(5):538-48. PubMed ID: 26011711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The canine sand maze: an appetitive spatial memory paradigm sensitive to age-related change in dogs.
    Salvin HE; McGreevy PD; Sachdev PS; Valenzuela MJ
    J Exp Anal Behav; 2011 Jan; 95(1):109-18. PubMed ID: 21541168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial working memory capacity in unilateral neglect.
    Malhotra P; Jäger HR; Parton A; Greenwood R; Playford ED; Brown MM; Driver J; Husain M
    Brain; 2005 Feb; 128(Pt 2):424-35. PubMed ID: 15644422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Greater Individual Variability in Functional Brain Activity during Working Memory Performance in young people with Autism and Executive Function Impairment.
    Hawco C; Yoganathan L; Voineskos AN; Lyon R; Tan T; Daskalakis ZJ; Blumberger DM; Croarkin PE; Lai MC; Szatmari P; Ameis SH
    Neuroimage Clin; 2020; 27():102260. PubMed ID: 32388347
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.