These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 33185794)
1. The effects of low-dose biochar amendments on arsenic accumulation in rice (Oryza sativa L.). Lv D; Wang Z; Sun Y; Jin W; Wang Y; Zhou L; Zheng X Environ Sci Pollut Res Int; 2021 Mar; 28(11):13495-13503. PubMed ID: 33185794 [TBL] [Abstract][Full Text] [Related]
2. Impacts of biochar and silicate fertilizer on arsenic accumulation in rice (Oryza sativa L.). Jin W; Wang Z; Sun Y; Wang Y; Bi C; Zhou L; Zheng X Ecotoxicol Environ Saf; 2020 Feb; 189():109928. PubMed ID: 31767458 [TBL] [Abstract][Full Text] [Related]
3. Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar. Yu Z; Qiu W; Wang F; Lei M; Wang D; Song Z Chemosphere; 2017 Feb; 168():341-349. PubMed ID: 27810533 [TBL] [Abstract][Full Text] [Related]
4. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation. Yang YP; Zhang HM; Yuan HY; Duan GL; Jin DC; Zhao FJ; Zhu YG Environ Pollut; 2018 May; 236():598-608. PubMed ID: 29433100 [TBL] [Abstract][Full Text] [Related]
5. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic. Wang N; Xue XM; Juhasz AL; Chang ZZ; Li HB Environ Pollut; 2017 Jan; 220(Pt A):514-522. PubMed ID: 27720546 [TBL] [Abstract][Full Text] [Related]
6. Mitigating arsenic accumulation in rice (Oryza sativa L.) using Fe-Mn-La-impregnated biochar composites in arsenic-contaminated paddy soil. Lin L; Gao M; Song Z; Mu H Environ Sci Pollut Res Int; 2020 Nov; 27(33):41446-41457. PubMed ID: 32683621 [TBL] [Abstract][Full Text] [Related]
7. Goethite modified biochar simultaneously mitigates the arsenic and cadmium accumulation in paddy rice (Oryza sativa) L. Irshad MK; Noman A; Wang Y; Yin Y; Chen C; Shang J Environ Res; 2022 Apr; 206():112238. PubMed ID: 34688646 [TBL] [Abstract][Full Text] [Related]
8. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils. Qiao JT; Liu TX; Wang XQ; Li FB; Lv YH; Cui JH; Zeng XD; Yuan YZ; Liu CP Chemosphere; 2018 Mar; 195():260-271. PubMed ID: 29272795 [TBL] [Abstract][Full Text] [Related]
9. Biochar amendment mitigates the health risks of dietary methylmercury exposure from rice consumption in mercury-contaminated areas. Wang Y; Sun Y; He T; Deng H; Wang Z; Wang J; Zheng X; Zhou L; Zhong H Environ Pollut; 2020 Dec; 267():115547. PubMed ID: 33254602 [TBL] [Abstract][Full Text] [Related]
10. Effect of biochar from peanut shell on speciation and availability of lead and zinc in an acidic paddy soil. Chao X; Qian X; Han-Hua Z; Shuai W; Qi-Hong Z; Dao-You H; Yang-Zhu Z Ecotoxicol Environ Saf; 2018 Nov; 164():554-561. PubMed ID: 30149354 [TBL] [Abstract][Full Text] [Related]
11. Iron-modified phosphorus- and silicon-based biochars exhibited various influences on arsenic, cadmium, and lead accumulation in rice and enzyme activities in a paddy soil. Yang X; Wen E; Ge C; El-Naggar A; Yu H; Wang S; Kwon EE; Song H; Shaheen SM; Wang H; Rinklebe J J Hazard Mater; 2023 Feb; 443(Pt B):130203. PubMed ID: 36327835 [TBL] [Abstract][Full Text] [Related]
12. Effects of varying amounts of different biochars on mercury methylation in paddy soils and methylmercury accumulation in rice (Oryza sativa L.). Wang Y; Chen L; Chen Y; Xue Y; Liu G; Zheng X; Zhou L; Zhong H Sci Total Environ; 2023 May; 874():162459. PubMed ID: 36871735 [TBL] [Abstract][Full Text] [Related]
13. The Fe Yao Y; Zhou H; Yan XL; Yang X; Huang KW; Liu J; Li LJ; Zhang JY; Gu JF; Zhou Y; Liao BH Environ Sci Pollut Res Int; 2021 Apr; 28(14):18050-18061. PubMed ID: 33410055 [TBL] [Abstract][Full Text] [Related]
14. Biochar and nitrate reduce risk of methylmercury in soils under straw amendment. Zhang Y; Liu YR; Lei P; Wang YJ; Zhong H Sci Total Environ; 2018 Apr; 619-620():384-390. PubMed ID: 29156259 [TBL] [Abstract][Full Text] [Related]
15. Reduced arsenic accumulation in indica rice (Oryza sativa L.) cultivar with ferromanganese oxide impregnated biochar composites amendments. Lin L; Gao M; Qiu W; Wang D; Huang Q; Song Z Environ Pollut; 2017 Dec; 231(Pt 1):479-486. PubMed ID: 28841500 [TBL] [Abstract][Full Text] [Related]
16. Effects of Fe-Mn-Ce oxide-modified biochar on As accumulation, morphology, and quality of rice (Oryza sativa L.). Lian F; Liu X; Gao M; Li H; Qiu W; Song Z Environ Sci Pollut Res Int; 2020 May; 27(15):18196-18207. PubMed ID: 32172416 [TBL] [Abstract][Full Text] [Related]
17. Effect of sulfur and sulfur-iron modified biochar on cadmium availability and transfer in the soil-rice system. Rajendran M; Shi L; Wu C; Li W; An W; Liu Z; Xue S Chemosphere; 2019 May; 222():314-322. PubMed ID: 30708165 [TBL] [Abstract][Full Text] [Related]
18. Effect of calcium and iron-enriched biochar on arsenic and cadmium accumulation from soil to rice paddy tissues. Islam MS; Magid ASIA; Chen Y; Weng L; Ma J; Arafat MY; Khan ZH; Li Y Sci Total Environ; 2021 Sep; 785():147163. PubMed ID: 33940407 [TBL] [Abstract][Full Text] [Related]
19. Effects of modified biochar on rhizosphere microecology of rice (Oryza sativa L.) grown in As-contaminated soil. Liu S; Lu Y; Yang C; Liu C; Ma L; Dang Z Environ Sci Pollut Res Int; 2017 Oct; 24(30):23815-23824. PubMed ID: 28866780 [TBL] [Abstract][Full Text] [Related]
20. Biochar amendment immobilizes lead in rice paddy soils and reduces its phytoavailability. Li H; Liu Y; Chen Y; Wang S; Wang M; Xie T; Wang G Sci Rep; 2016 Aug; 6():31616. PubMed ID: 27530495 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]