BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33185810)

  • 1. Establishment and optimization of a high-throughput mimic perfusion model in ambr
    Jin L; Wang ZS; Cao Y; Sun RQ; Zhou H; Cao RY
    Biotechnol Lett; 2021 Feb; 43(2):423-433. PubMed ID: 33185810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scale-down model qualification of ambr® 250 high-throughput mini-bioreactor system for two commercial-scale mAb processes.
    Manahan M; Nelson M; Cacciatore JJ; Weng J; Xu S; Pollard J
    Biotechnol Prog; 2019 Nov; 35(6):e2870. PubMed ID: 31207168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a novel, high-throughput screening tool for efficient perfusion-based cell culture process development.
    Gagliardi TM; Chelikani R; Yang Y; Tuozzolo G; Yuan H
    Biotechnol Prog; 2019 Jul; 35(4):e2811. PubMed ID: 30932357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ambr
    Warr SRC
    Methods Mol Biol; 2020; 2095():43-67. PubMed ID: 31858462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of TAP Ambr 250 disposable bioreactors, as a reliable scale-down model for biologics process development.
    Xu P; Clark C; Ryder T; Sparks C; Zhou J; Wang M; Russell R; Scott C
    Biotechnol Prog; 2017 Mar; 33(2):478-489. PubMed ID: 27977912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High throughput automated microbial bioreactor system used for clone selection and rapid scale-down process optimization.
    Velez-Suberbie ML; Betts JPJ; Walker KL; Robinson C; Zoro B; Keshavarz-Moore E
    Biotechnol Prog; 2018 Jan; 34(1):58-68. PubMed ID: 28748655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Platform development for high-throughput optimization of perfusion processes-Part II: Variation of perfusion rate strategies in microwell plates.
    Dorn M; Lucas C; Klottrup-Rees K; Lee K; Micheletti M
    Biotechnol Bioeng; 2024 Jun; 121(6):1774-1788. PubMed ID: 38433473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel scale-down mimic of perfusion cell culture using sedimentation in an automated microbioreactor (SAM).
    Kreye S; Stahn R; Nawrath K; Goralczyk V; Zoro B; Goletz S
    Biotechnol Prog; 2019 Sep; 35(5):e2832. PubMed ID: 31050211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of high-throughput mini-bioreactor system for systematic scale-down modeling, process characterization, and control strategy development.
    Janakiraman V; Kwiatkowski C; Kshirsagar R; Ryll T; Huang YM
    Biotechnol Prog; 2015; 31(6):1623-32. PubMed ID: 26317495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scale-Down Model Development in ambr systems: An Industrial Perspective.
    Sandner V; Pybus LP; McCreath G; Glassey J
    Biotechnol J; 2019 Apr; 14(4):e1700766. PubMed ID: 30350921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome analysis for the scale-down of a CHO cell fed-batch process.
    Alsayyari AA; Pan X; Dalm C; van der Veen JW; Vriezen N; Hageman JA; Wijffels RH; Martens DE
    J Biotechnol; 2018 Aug; 279():61-72. PubMed ID: 29800599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semi-continuous scale-down models for clone and operating parameter screening in perfusion bioreactors.
    Bielser JM; Domaradzki J; Souquet J; Broly H; Morbidelli M
    Biotechnol Prog; 2019 May; 35(3):e2790. PubMed ID: 30773840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopy integration to miniature bioreactors and large scale production bioreactors-Increasing current capabilities and model transfer.
    Rowland-Jones RC; Graf A; Woodhams A; Diaz-Fernandez P; Warr S; Soeldner R; Finka G; Hoehse M
    Biotechnol Prog; 2021 Jan; 37(1):e3074. PubMed ID: 32865874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automation of high CHO cell density seed intensification via online control of the cell specific perfusion rate and its impact on the N-stage inoculum quality.
    Schulze M; Lemke J; Pollard D; Wijffels RH; Matuszczyk J; Martens DE
    J Biotechnol; 2021 Jul; 335():65-75. PubMed ID: 34090946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a shake tube-based scale-down model for perfusion cultures.
    Wolf MKF; Lorenz V; Karst DJ; Souquet J; Broly H; Morbidelli M
    Biotechnol Bioeng; 2018 Nov; 115(11):2703-2713. PubMed ID: 30039852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and application of a high-throughput platform for perfusion-based cell culture processes.
    Villiger-Oberbek A; Yang Y; Zhou W; Yang J
    J Biotechnol; 2015 Oct; 212():21-9. PubMed ID: 26197419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishment of a fully automated microtiter plate-based system for suspension cell culture and its application for enhanced process optimization.
    Markert S; Joeris K
    Biotechnol Bioeng; 2017 Jan; 114(1):113-121. PubMed ID: 27399304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Principles and approach to developing mammalian cell culture media for high cell density perfusion process leveraging established fed-batch media.
    Lin H; Leighty RW; Godfrey S; Wang SB
    Biotechnol Prog; 2017 Jul; 33(4):891-901. PubMed ID: 28371394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing performance of semi-continuous cell culture in an ambr15™ microbioreactor using dynamic flux balance modeling.
    Kelly W; Veigne S; Li X; Subramanian SS; Huang Z; Schaefer E
    Biotechnol Prog; 2018 Mar; 34(2):420-431. PubMed ID: 29152911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioreactor productivity and media cost comparison for different intensified cell culture processes.
    Xu S; Gavin J; Jiang R; Chen H
    Biotechnol Prog; 2017 Jul; 33(4):867-878. PubMed ID: 27977910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.