BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 33185938)

  • 1. High-Throughput Measurements of Intra-Cellular and Secreted Cytokine from Single Spheroids Using Anchored Microfluidic Droplets.
    Saint-Sardos A; Sart S; Lippera K; Brient-Litzler E; Michelin S; Amselem G; Baroud CN
    Small; 2020 Dec; 16(49):e2002303. PubMed ID: 33185938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Individual Control and Quantification of 3D Spheroids in a High-Density Microfluidic Droplet Array.
    Tomasi RF; Sart S; Champetier T; Baroud CN
    Cell Rep; 2020 May; 31(8):107670. PubMed ID: 32460010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of VEGF-A secretion from tumor cells under cellular stresses in conventional monolayer culture and microfluidic three-dimensional spheroid models.
    Sarkar S; Peng CC; Tung YC
    PLoS One; 2020; 15(11):e0240833. PubMed ID: 33175874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uniform sized cancer spheroids production using hydrogel-based droplet microfluidics: a review.
    Kim S; Lam PY; Jayaraman A; Han A
    Biomed Microdevices; 2024 May; 26(2):26. PubMed ID: 38806765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid Production and Recovery of Cell Spheroids by Automated Droplet Microfluidics.
    Langer K; Joensson HN
    SLAS Technol; 2020 Apr; 25(2):111-122. PubMed ID: 31561747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid spheroid clearing on a microfluidic chip.
    Silva Santisteban T; Rabajania O; Kalinina I; Robinson S; Meier M
    Lab Chip; 2017 Dec; 18(1):153-161. PubMed ID: 29192297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Digital microfluidics for automated hanging drop cell spheroid culture.
    Aijian AP; Garrell RL
    J Lab Autom; 2015 Jun; 20(3):283-95. PubMed ID: 25510471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput mechanophenotyping of multicellular spheroids using a microfluidic micropipette aspiration chip.
    Boot RC; Roscani A; van Buren L; Maity S; Koenderink GH; Boukany PE
    Lab Chip; 2023 Mar; 23(7):1768-1778. PubMed ID: 36809459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Digital microfluidics for spheroid-based invasion assays.
    Bender BF; Aijian AP; Garrell RL
    Lab Chip; 2016 Apr; 16(8):1505-13. PubMed ID: 27020962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent methods of droplet microfluidics and their applications in spheroids and organoids.
    Wang Y; Liu M; Zhang Y; Liu H; Han L
    Lab Chip; 2023 Mar; 23(5):1080-1096. PubMed ID: 36628972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic device flow field characterization around tumor spheroids with tunable necrosis produced in an optimized off-chip process.
    Baye J; Galvin C; Shen AQ
    Biomed Microdevices; 2017 Sep; 19(3):59. PubMed ID: 28667400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.
    Sakai Y; Hattori K; Yanagawa F; Sugiura S; Kanamori T; Nakazawa K
    Biotechnol J; 2014 Jul; 9(7):971-9. PubMed ID: 24802801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of 3D Spheroids Using a Thiol-Acrylate Hydrogel Scaffold to Study Endocrine Response in ER
    Khan AH; Zhou SP; Moe M; Ortega Quesada BA; Bajgiran KR; Lassiter HR; Dorman JA; Martin EC; Pojman JA; Melvin AT
    ACS Biomater Sci Eng; 2022 Sep; 8(9):3977-3985. PubMed ID: 36001134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass fabrication of uniform sized 3D tumor spheroid using high-throughput microfluidic system.
    Kwak B; Lee Y; Lee J; Lee S; Lim J
    J Control Release; 2018 Apr; 275():201-207. PubMed ID: 29474963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VEGF expression is regulated by HIF-1α and ARNT in 3D KYSE-70, esophageal cancer cell spheroids.
    Terashima J; Sampei S; Iidzuka M; Ohsakama A; Tachikawa C; Satoh J; Kudo K; Habano W; Ozawa S
    Cell Biol Int; 2016 Nov; 40(11):1187-1194. PubMed ID: 27542820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in the secretome of tri-dimensional spheroid-cultured human mesenchymal stem cells in vitro by interleukin-1 priming.
    Redondo-Castro E; Cunningham CJ; Miller J; Brown H; Allan SM; Pinteaux E
    Stem Cell Res Ther; 2018 Jan; 9(1):11. PubMed ID: 29343288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Step Biofabrication of In Situ Spheroid-Forming Compartmentalized Hydrogel for Clinical-Sized Cartilage Tissue Formation.
    van Loo B; Schot M; Gurian M; Kamperman T; Leijten J
    Adv Healthc Mater; 2024 Jan; 13(2):e2300095. PubMed ID: 37793116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale cytometry and regulation of 3D cell cultures on a chip.
    Sart S; Tomasi RF; Amselem G; Baroud CN
    Nat Commun; 2017 Sep; 8(1):469. PubMed ID: 28883466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic platform for studying the anti-cancer effect of ursolic acid on tumor spheroid.
    Chang S; Wen J; Su Y; Ma H
    Electrophoresis; 2022 Jul; 43(13-14):1466-1475. PubMed ID: 35315532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifactorial Experimental Design to Optimize the Anti-Inflammatory and Proangiogenic Potential of Mesenchymal Stem Cell Spheroids.
    Murphy KC; Whitehead J; Falahee PC; Zhou D; Simon SI; Leach JK
    Stem Cells; 2017 Jun; 35(6):1493-1504. PubMed ID: 28276602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.