These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33186119)

  • 1. An EMG-Driven Musculoskeletal Model for Estimating Continuous Wrist Motion.
    Zhao Y; Zhang Z; Li Z; Yang Z; Dehghani-Sanij AA; Xie S
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3113-3120. PubMed ID: 33186119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous and Proportional Control of Wrist and Hand Movements Based on a Neural-Driven Musculoskeletal Model.
    Li J; Yue S; Pan L
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3999-4007. PubMed ID: 37815968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing EMG-Based Human-Machine Interfaces for Estimating Continuous, Coordinated Movements.
    Pan L; Crouch DL; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2145-2154. PubMed ID: 31478862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Musculoskeletal model predicts multi-joint wrist and hand movement from limited EMG control signals.
    Crouch DL; He Huang
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1132-5. PubMed ID: 26736465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow.
    Koo TK; Mak AF
    J Electromyogr Kinesiol; 2005 Feb; 15(1):12-26. PubMed ID: 15642650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lumped-parameter electromyogram-driven musculoskeletal hand model: A potential platform for real-time prosthesis control.
    Crouch DL; Huang H
    J Biomech; 2016 Dec; 49(16):3901-3907. PubMed ID: 27814972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Reinforcement Learning to Estimate Human Joint Moments From Electromyography or Joint Kinematics: An Alternative Solution to Musculoskeletal-Based Biomechanics.
    Wu W; Saul KR; Huang HH
    J Biomech Eng; 2021 Apr; 143(4):. PubMed ID: 33332536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A musculoskeletal model driven by muscle synergy-derived excitations for hand and wrist movements.
    Zhao J; Yu Y; Wang X; Ma S; Sheng X; Zhu X
    J Neural Eng; 2022 Feb; 19(1):. PubMed ID: 34986472
    [No Abstract]   [Full Text] [Related]  

  • 9. EMG-based learning approach for estimating wrist motion.
    El-Khoury S; Batzianoulis I; Antuvan CW; Contu S; Masia L; Micera S; Billard A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6732-5. PubMed ID: 26737838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between joint motion and flexor tendon force in the canine forelimb.
    Lieber RL; Amiel D; Kaufman KR; Whitney J; Gelberman RH
    J Hand Surg Am; 1996 Nov; 21(6):957-62. PubMed ID: 8969415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of electromechanical wrist robot assistive system with neuromuscular electrical stimulation for stroke rehabilitation.
    Hu XL; Tong KY; Li R; Xue JJ; Ho SK; Chen P
    J Electromyogr Kinesiol; 2012 Jun; 22(3):431-9. PubMed ID: 22277205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel TCN-LSTM Hybrid Model for sEMG-Based Continuous Estimation of Wrist Joint Angles.
    Du J; Liu Z; Dong W; Zhang W; Miao Z
    Sensors (Basel); 2024 Aug; 24(17):. PubMed ID: 39275542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke.
    Hu XL; Tong KY; Song R; Zheng XJ; Leung WW
    Neurorehabil Neural Repair; 2009 Oct; 23(8):837-46. PubMed ID: 19531605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A linear model for simultaneously and proportionally estimating wrist kinematics from emg during mirrored bilateral movements.
    Pan L; Sheng X; Zhang D; Zhu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4593-6. PubMed ID: 24110757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subject-specific musculoskeletal parameters of wrist flexors and extensors estimated by an EMG-driven musculoskeletal model.
    Colacino FM; Rustighi E; Mace BR
    Med Eng Phys; 2012 Jun; 34(5):531-40. PubMed ID: 21937254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity analysis guided improvement of an electromyogram-driven lumped parameter musculoskeletal hand model.
    Hinson R; Saul K; Kamper D; Huang H
    J Biomech; 2022 Aug; 141():111200. PubMed ID: 35764012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human joint motion estimation for electromyography (EMG)-based dynamic motion control.
    Zhang Q; Hosoda R; Venture G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():21-4. PubMed ID: 24109614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EMG-Driven Optimal Estimation of Subject-SPECIFIC Hill Model Muscle-Tendon Parameters of the Knee Joint Actuators.
    Falisse A; Van Rossom S; Jonkers I; De Groote F
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2253-2262. PubMed ID: 27875132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of continuous elbow joint movement based on human physiological structure.
    Li K; Zhang J; Liu X; Zhang M
    Biomed Eng Online; 2019 Mar; 18(1):31. PubMed ID: 30894195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An EMG-driven musculoskeletal model for the estimation of biomechanical parameters of wrist flexors.
    Colacino FM; Rustighi E; Mace BR
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4870-3. PubMed ID: 21096908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.