BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 33186373)

  • 1. Integration of small RNA, degradome and proteome sequencing in Oryza sativa reveals a delayed senescence network in tetraploid rice seed.
    Huang B; Gan L; Chen D; Zhang Y; Zhang Y; Liu X; Chen S; Wei Z; Tong L; Song Z; Zhang X; Cai D; Zhang C; He Y
    PLoS One; 2020; 15(11):e0242260. PubMed ID: 33186373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradome sequencing reveals an integrative miRNA-mediated gene interaction network regulating rice seed vigor.
    Zhou S; Huang K; Zhou Y; Hu Y; Xiao Y; Chen T; Yin M; Liu Y; Xu M; Jiang X
    BMC Plant Biol; 2022 Jun; 22(1):269. PubMed ID: 35650544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of small RNAs revealed differential expressions during pollen and embryo sac development in autotetraploid rice.
    Li X; Shahid MQ; Xia J; Lu Z; Fang N; Wang L; Wu J; Chen Z; Liu X
    BMC Genomics; 2017 Feb; 18(1):129. PubMed ID: 28166742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide analysis of microRNAs and their target genes related to leaf senescence of rice.
    Xu X; Bai H; Liu C; Chen E; Chen Q; Zhuang J; Shen B
    PLoS One; 2014; 9(12):e114313. PubMed ID: 25479006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional multiomics reveals the mechanism of seed deterioration in Nicotiana tabacum L. and Oryza sativa L.
    An J; Liu Y; Han J; He C; Chen M; Zhu X; Hu W; Song W; Hu J; Guan Y
    J Adv Res; 2022 Dec; 42():163-176. PubMed ID: 36513411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A transcriptome-wide study on the microRNA- and the Argonaute 1-enriched small RNA-mediated regulatory networks involved in plant leaf senescence.
    Qin J; Ma X; Yi Z; Tang Z; Meng Y
    Plant Biol (Stuttg); 2016 Mar; 18(2):197-205. PubMed ID: 26206233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the regulatory roles of the microRNAs and the Argonaute 1-enriched small RNAs in plant metabolism.
    Qin J; Tang Z; Ma X; Meng Y
    Gene; 2017 Sep; 628():180-189. PubMed ID: 28698160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of gene regulatory networks mediated by vegetative and reproductive stage-specific small RNAs in rice (Oryza sativa).
    Meng Y; Shao C; Wang H; Ma X; Chen M
    New Phytol; 2013 Jan; 197(2):441-453. PubMed ID: 23121287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide characterization of rice black streaked dwarf virus-responsive microRNAs in rice leaves and roots by small RNA and degradome sequencing.
    Sun Z; He Y; Li J; Wang X; Chen J
    Plant Cell Physiol; 2015 Apr; 56(4):688-99. PubMed ID: 25535197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated Analysis of Small RNA, Transcriptome, and Degradome Sequencing Reveals the MiR156, MiR5488 and MiR399 are Involved in the Regulation of Male Sterility in PTGMS Rice.
    Sun Y; Xiong X; Wang Q; Zhu L; Wang L; He Y; Zeng H
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33668376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytological observation and RNA-seq analysis reveal novel miRNAs high expression associated with the pollen fertility of neo-tetraploid rice.
    Li X; Huang X; Wen M; Yin W; Chen Y; Liu Y; Liu X
    BMC Plant Biol; 2023 Sep; 23(1):434. PubMed ID: 37723448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Next-Generation Sequencing Sheds New Light on Small RNAs in Plant Reproductive Development.
    Li X
    Curr Issues Mol Biol; 2018; 27():143-170. PubMed ID: 28885180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterosis analysis and underlying molecular regulatory mechanism in a wide-compatible neo-tetraploid rice line with long panicles.
    Ghaleb MAA; Li C; Shahid MQ; Yu H; Liang J; Chen R; Wu J; Liu X
    BMC Plant Biol; 2020 Feb; 20(1):83. PubMed ID: 32085735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Re-sequencing and transcriptome analysis reveal rich DNA variations and differential expressions of fertility-related genes in neo-tetraploid rice.
    Bei X; Shahid MQ; Wu J; Chen Z; Wang L; Liu X
    PLoS One; 2019; 14(4):e0214953. PubMed ID: 30951558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unique Glutelin Expression Patterns and Seed Endosperm Structure Facilitate Glutelin Accumulation in Polyploid Rice Seed.
    Gan L; Huang B; Song Z; Zhang Y; Zhang Y; Chen S; Tong L; Wei Z; Yu L; Luo X; Zhang X; Cai D; He Y
    Rice (N Y); 2021 Jul; 14(1):61. PubMed ID: 34224013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytological Observations and Bulked-Segregant Analysis Coupled Global Genome Sequencing Reveal Two Genes Associated with Pollen Fertility in Tetraploid Rice.
    Kamara N; Jiao Y; Lu Z; Aloryi KD; Wu J; Liu X; Shahid MQ
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33467721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beyond cleaved small RNA targets: unraveling the complexity of plant RNA degradome data.
    Hou CY; Wu MT; Lu SH; Hsing YI; Chen HM
    BMC Genomics; 2014 Jan; 15():15. PubMed ID: 24405808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of regulatory networks mediated by small RNAs responsive to abiotic stresses in rice (Oryza sativa).
    Qin J; Ma X; Tang Z; Meng Y
    Comput Biol Chem; 2015 Oct; 58():69-80. PubMed ID: 26057839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Small RNA Analysis of Pollen Development in Autotetraploid and Diploid Rice.
    Li X; Shahid MQ; Wu J; Wang L; Liu X; Lu Y
    Int J Mol Sci; 2016 Apr; 17(4):499. PubMed ID: 27077850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and expression profiles of miRNAs in rice seeds.
    Xue LJ; Zhang JJ; Xue HW
    Nucleic Acids Res; 2009 Feb; 37(3):916-30. PubMed ID: 19103661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.