BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33186449)

  • 1. The role of CLAVATA signalling in the negative regulation of mycorrhizal colonization and nitrogen response of tomato.
    Wang C; Velandia K; Kwon CT; Wulf KE; Nichols DS; Reid JB; Foo E
    J Exp Bot; 2021 Feb; 72(5):1702-1713. PubMed ID: 33186449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of CLE Peptides in the Suppression of Mycorrhizal Colonization of Tomato.
    Wulf K; Sun J; Wang C; Ho-Plagaro T; Kwon CT; Velandia K; Correa-Lozano A; Tamayo-Navarrete MI; Reid JB; García Garrido JM; Foo E
    Plant Cell Physiol; 2024 Jan; 65(1):107-119. PubMed ID: 37874980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous symbiotic reprogramming of plant roots triggered by receptor-like kinases.
    Ried MK; Antolín-Llovera M; Parniske M
    Elife; 2014 Nov; 3():. PubMed ID: 25422918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Art of Self-Control - Autoregulation of Plant-Microbe Symbioses.
    Wang C; Reid JB; Foo E
    Front Plant Sci; 2018; 9():988. PubMed ID: 30042780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Common and divergent roles of plant hormones in nodulation and arbuscular mycorrhizal symbioses.
    Foo E; Ferguson BJ; Reid JB
    Plant Signal Behav; 2014; 9(9):e29593. PubMed ID: 25763697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The LysM receptor-like kinase SlLYK10 regulates the arbuscular mycorrhizal symbiosis in tomato.
    Buendia L; Wang T; Girardin A; Lefebvre B
    New Phytol; 2016 Apr; 210(1):184-95. PubMed ID: 26612325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Common and divergent shoot-root signalling in legume symbioses.
    Foo E; Heynen EM; Reid JB
    New Phytol; 2016 Apr; 210(2):643-56. PubMed ID: 26661110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SlSPX1-SlPHR complexes mediate the suppression of arbuscular mycorrhizal symbiosis by phosphate repletion in tomato.
    Liao D; Sun C; Liang H; Wang Y; Bian X; Dong C; Niu X; Yang M; Xu G; Chen A; Wu S
    Plant Cell; 2022 Sep; 34(10):4045-4065. PubMed ID: 35863053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mycorrhizal networks facilitate the colonization of legume roots by a symbiotic nitrogen-fixing bacterium.
    de Novais CB; Sbrana C; da Conceição Jesus E; Rouws LFM; Giovannetti M; Avio L; Siqueira JO; Saggin Júnior OJ; da Silva EMR; de Faria SM
    Mycorrhiza; 2020 May; 30(2-3):389-396. PubMed ID: 32215759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracing nonlegume orthologs of legume genes required for nodulation and arbuscular mycorrhizal symbioses.
    Zhu H; Riely BK; Burns NJ; Ané JM
    Genetics; 2006 Apr; 172(4):2491-9. PubMed ID: 16452143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced mycorrhizal colonization (rmc) tomato mutant lacks expression of SymRK signaling pathway genes.
    Nair A; Bhargava S
    Plant Signal Behav; 2012 Dec; 7(12):1578-83. PubMed ID: 23221680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The reduced mycorrhizal colonisation (rmc) mutation of tomato disrupts five gene sequences including the CYCLOPS/IPD3 homologue.
    Larkan NJ; Ruzicka DR; Edmonds-Tibbett T; Durkin JM; Jackson LE; Smith FA; Schachtman DP; Smith SE; Barker SJ
    Mycorrhiza; 2013 Oct; 23(7):573-84. PubMed ID: 23572326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The CLE53-SUNN genetic pathway negatively regulates arbuscular mycorrhiza root colonization in Medicago truncatula.
    Karlo M; Boschiero C; Landerslev KG; Blanco GS; Wen J; Mysore KS; Dai X; Zhao PX; de Bang TC
    J Exp Bot; 2020 Aug; 71(16):4972-4984. PubMed ID: 32309861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression analysis suggests potential roles of microRNAs for phosphate and arbuscular mycorrhizal signaling in Solanum lycopersicum.
    Gu M; Xu K; Chen A; Zhu Y; Tang G; Xu G
    Physiol Plant; 2010 Feb; 138(2):226-37. PubMed ID: 20015123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unearthing the plant-microbe quid pro quo in root associations with beneficial fungi.
    Almario J; Fabiańska I; Saridis G; Bucher M
    New Phytol; 2022 Jun; 234(6):1967-1976. PubMed ID: 35239199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-distance transport of signals during symbiosis: are nodule formation and mycorrhization autoregulated in a similar way?
    Staehelin C; Xie ZP; Illana A; Vierheilig H
    Plant Signal Behav; 2011 Mar; 6(3):372-7. PubMed ID: 21455020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Late activation of the 9-oxylipin pathway during arbuscular mycorrhiza formation in tomato and its regulation by jasmonate signalling.
    León-Morcillo RJ; Angel J; Martín-Rodríguez ; Vierheilig H; Ocampo JA; García-Garrido JM
    J Exp Bot; 2012 Jun; 63(10):3545-58. PubMed ID: 22442425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signaling in the arbuscular mycorrhizal symbiosis.
    Harrison MJ
    Annu Rev Microbiol; 2005; 59():19-42. PubMed ID: 16153162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The characterization of six auxin-induced tomato GH3 genes uncovers a member, SlGH3.4, strongly responsive to arbuscular mycorrhizal symbiosis.
    Liao D; Chen X; Chen A; Wang H; Liu J; Liu J; Gu M; Sun S; Xu G
    Plant Cell Physiol; 2015 Apr; 56(4):674-87. PubMed ID: 25535196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tomato responses to Funneliformis mosseae during the early stages of arbuscular mycorrhizal symbiosis.
    Cesaro P; Massa N; Cantamessa S; Todeschini V; Bona E; Berta G; Barbato R; Lingua G
    Mycorrhiza; 2020 Sep; 30(5):601-610. PubMed ID: 32621137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.