BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33186504)

  • 1. Vertebrate Chromosome Evolution.
    Damas J; Corbo M; Lewin HA
    Annu Rev Anim Biosci; 2021 Feb; 9():1-27. PubMed ID: 33186504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bridging the Gap between Vertebrate Cytogenetics and Genomics with Single-Chromosome Sequencing (ChromSeq).
    Iannucci A; Makunin AI; Lisachov AP; Ciofi C; Stanyon R; Svartman M; Trifonov VA
    Genes (Basel); 2021 Jan; 12(1):. PubMed ID: 33478118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracing the evolution of amniote chromosomes.
    Deakin JE; Ezaz T
    Chromosoma; 2014 Jun; 123(3):201-16. PubMed ID: 24664317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo genome assembly of the cichlid fish Astatotilapia latifasciata reveals a higher level of genomic polymorphism and genes related to B chromosomes.
    Jehangir M; Ahmad SF; Cardoso AL; Ramos E; Valente GT; Martins C
    Chromosoma; 2019 Jun; 128(2):81-96. PubMed ID: 31115663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates.
    Nakatani Y; Takeda H; Kohara Y; Morishita S
    Genome Res; 2007 Sep; 17(9):1254-65. PubMed ID: 17652425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromosomics: Bridging the Gap between Genomes and Chromosomes.
    Deakin JE; Potter S; O'Neill R; Ruiz-Herrera A; Cioffi MB; Eldridge MDB; Fukui K; Marshall Graves JA; Griffin D; Grutzner F; Kratochvíl L; Miura I; Rovatsos M; Srikulnath K; Wapstra E; Ezaz T
    Genes (Basel); 2019 Aug; 10(8):. PubMed ID: 31434289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Centromere evolution and CpG methylation during vertebrate speciation.
    Ichikawa K; Tomioka S; Suzuki Y; Nakamura R; Doi K; Yoshimura J; Kumagai M; Inoue Y; Uchida Y; Irie N; Takeda H; Morishita S
    Nat Commun; 2017 Nov; 8(1):1833. PubMed ID: 29184138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Principles of 3D chromosome folding and evolutionary genome reshuffling in mammals.
    Álvarez-González L; Arias-Sardá C; Montes-Espuña L; Marín-Gual L; Vara C; Lister NC; Cuartero Y; Garcia F; Deakin J; Renfree MB; Robinson TJ; Martí-Renom MA; Waters PD; Farré M; Ruiz-Herrera A
    Cell Rep; 2022 Dec; 41(12):111839. PubMed ID: 36543130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene order data from a model amphibian (Ambystoma): new perspectives on vertebrate genome structure and evolution.
    Smith JJ; Voss SR
    BMC Genomics; 2006 Aug; 7():219. PubMed ID: 16939647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A linkage map for the Newt Notophthalmus viridescens: Insights in vertebrate genome and chromosome evolution.
    Keinath MC; Voss SR; Tsonis PA; Smith JJ
    Dev Biol; 2017 Jun; 426(2):211-218. PubMed ID: 27265323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Why Do Some Vertebrates Have Microchromosomes?
    Srikulnath K; Ahmad SF; Singchat W; Panthum T
    Cells; 2021 Aug; 10(9):. PubMed ID: 34571831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction and evolutionary history of eutherian chromosomes.
    Kim J; Farré M; Auvil L; Capitanu B; Larkin DM; Ma J; Lewin HA
    Proc Natl Acad Sci U S A; 2017 Jul; 114(27):E5379-E5388. PubMed ID: 28630326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the Evolution of Reptile Chromosomes through Applications of Combined Cytogenetics and Genomics Approaches.
    Deakin JE; Ezaz T
    Cytogenet Genome Res; 2019; 157(1-2):7-20. PubMed ID: 30645998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissecting evolution and disease using comparative vertebrate genomics.
    Meadows JRS; Lindblad-Toh K
    Nat Rev Genet; 2017 Oct; 18(10):624-636. PubMed ID: 28736437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Plasticity of Genome Architecture.
    Farré M; Ruiz-Herrera A
    Genes (Basel); 2020 Nov; 11(12):. PubMed ID: 33260806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of gene evolution in vertebrate genome reveals novel insights into spine study.
    Yang Z; Hu F
    Gene; 2018 Dec; 679():360-368. PubMed ID: 30218752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Did sex chromosome turnover promote divergence of the major mammal groups?: De novo sex chromosomes and drastic rearrangements may have posed reproductive barriers between monotremes, marsupials and placental mammals.
    Graves JA
    Bioessays; 2016 Aug; 38(8):734-43. PubMed ID: 27334831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstructing the architecture of the ancestral amniote genome.
    Ouangraoua A; Tannier E; Chauve C
    Bioinformatics; 2011 Oct; 27(19):2664-71. PubMed ID: 21846735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstruction of avian ancestral karyotypes reveals differences in the evolutionary history of macro- and microchromosomes.
    Damas J; Kim J; Farré M; Griffin DK; Larkin DM
    Genome Biol; 2018 Oct; 19(1):155. PubMed ID: 30290830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The chromosomes of terraranan frogs. Insights into vertebrate cytogenetics.
    Schmid M; Steinlein C; Bogart JP; Feichtinger W; León P; La Marca E; Díaz LM; Sanz A; Chen SH; Hedges SB
    Cytogenet Genome Res; 2010 Oct; 130-131(1-8):1-14. PubMed ID: 21063086
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.