BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 33186519)

  • 21. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis.
    Chen Z; Trotman LC; Shaffer D; Lin HK; Dotan ZA; Niki M; Koutcher JA; Scher HI; Ludwig T; Gerald W; Cordon-Cardo C; Pandolfi PP
    Nature; 2005 Aug; 436(7051):725-30. PubMed ID: 16079851
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stimulation of cellular senescent processes, including secretory phenotypes and anti-oxidant responses, after androgen deprivation therapy in human prostate cancer.
    Kawata H; Kamiakito T; Nakaya T; Komatsubara M; Komatsu K; Morita T; Nagao Y; Tanaka A
    J Steroid Biochem Mol Biol; 2017 Jan; 165(Pt B):219-227. PubMed ID: 27329245
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DGCR8 is essential for tumor progression following PTEN loss in the prostate.
    Belair CD; Paikari A; Moltzahn F; Shenoy A; Yau C; Dall'Era M; Simko J; Benz C; Blelloch R
    EMBO Rep; 2015 Sep; 16(9):1219-32. PubMed ID: 26206718
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PTEN deletion and heme oxygenase-1 overexpression cooperate in prostate cancer progression and are associated with adverse clinical outcome.
    Li Y; Su J; DingZhang X; Zhang J; Yoshimoto M; Liu S; Bijian K; Gupta A; Squire JA; Alaoui Jamali MA; Bismar TA
    J Pathol; 2011 May; 224(1):90-100. PubMed ID: 21381033
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distinct phenotypes and 'bystander' effects of senescent tumour cells induced by docetaxel or immunomodulatory cytokines.
    Sapega O; Mikyšková R; Bieblová J; Mrázková B; Hodný Z; Reiniš M
    Int J Oncol; 2018 Nov; 53(5):1997-2009. PubMed ID: 30226595
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The identification of senescence-specific genes during the induction of senescence in prostate cancer cells.
    Schwarze SR; Fu VX; Desotelle JA; Kenowski ML; Jarrard DF
    Neoplasia; 2005 Sep; 7(9):816-23. PubMed ID: 16229804
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Retinoic acid receptor activation reprograms senescence response and enhances anti-tumor activity of natural killer cells.
    Colucci M; Zumerle S; Bressan S; Gianfanti F; Troiani M; Valdata A; D'Ambrosio M; Pasquini E; Varesi A; Cogo F; Mosole S; Dongilli C; Desbats MA; Contu L; Revankdar A; Chen J; Kalathur M; Perciato ML; Basilotta R; Endre L; Schauer S; Othman A; Guccini I; Saponaro M; Maraccani L; Bancaro N; Lai P; Liu L; Pernigoni N; Mele F; Merler S; Trotman LC; Guarda G; Calì B; Montopoli M; Alimonti A
    Cancer Cell; 2024 Apr; 42(4):646-661.e9. PubMed ID: 38428412
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protease Expression Levels in Prostate Cancer Tissue Can Explain Prostate Cancer-Associated Seminal Biomarkers-An Explorative Concept Study.
    Neuhaus J; Schiffer E; Mannello F; Horn LC; Ganzer R; Stolzenburg JU
    Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28471417
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Eya2 Is Overexpressed in Human Prostate Cancer and Regulates Docetaxel Sensitivity and Mitochondrial Membrane Potential through AKT/Bcl-2 Signaling.
    Liu Z; Zhao L; Song Y
    Biomed Res Int; 2019; 2019():3808432. PubMed ID: 31317026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Downregulation of miR-130b~301b cluster is mediated by aberrant promoter methylation and impairs cellular senescence in prostate cancer.
    Ramalho-Carvalho J; Graça I; Gomez A; Oliveira J; Henrique R; Esteller M; Jerónimo C
    J Hematol Oncol; 2017 Feb; 10(1):43. PubMed ID: 28166834
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Loss of TIMP-1 immune expression and tumor recurrence in localized prostate cancer.
    Reis ST; Viana NI; Iscaife A; Pontes-Junior J; Dip N; Antunes AA; Guimarães VR; Santana I; Nahas WC; Srougi M; Leite KR
    Int Braz J Urol; 2015; 41(6):1088-95. PubMed ID: 26742965
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TIMP1 is a prognostic marker for the progression and metastasis of colon cancer through FAK-PI3K/AKT and MAPK pathway.
    Song G; Xu S; Zhang H; Wang Y; Xiao C; Jiang T; Wu L; Zhang T; Sun X; Zhong L; Zhou C; Wang Z; Peng Z; Chen J; Wang X
    J Exp Clin Cancer Res; 2016 Sep; 35(1):148. PubMed ID: 27644693
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Senescence-associated secretory factors induced by cisplatin in melanoma cells promote non-senescent melanoma cell growth through activation of the ERK1/2-RSK1 pathway.
    Sun X; Shi B; Zheng H; Min L; Yang J; Li X; Liao X; Huang W; Zhang M; Xu S; Zhu Z; Cui H; Liu X
    Cell Death Dis; 2018 Feb; 9(3):260. PubMed ID: 29449532
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Klf5 deletion promotes Pten deletion-initiated luminal-type mouse prostate tumors through multiple oncogenic signaling pathways.
    Xing C; Ci X; Sun X; Fu X; Zhang Z; Dong EN; Hao ZZ; Dong JT
    Neoplasia; 2014 Nov; 16(11):883-99. PubMed ID: 25425963
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SLUG is a direct transcriptional repressor of PTEN tumor suppressor.
    Uygur B; Abramo K; Leikina E; Vary C; Liaw L; Wu WS
    Prostate; 2015 Jun; 75(9):907-16. PubMed ID: 25728608
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MYC Drives Pten/Trp53-Deficient Proliferation and Metastasis due to IL6 Secretion and AKT Suppression via PHLPP2.
    Nowak DG; Cho H; Herzka T; Watrud K; DeMarco DV; Wang VM; Senturk S; Fellmann C; Ding D; Beinortas T; Kleinman D; Chen M; Sordella R; Wilkinson JE; Castillo-Martin M; Cordon-Cardo C; Robinson BD; Trotman LC
    Cancer Discov; 2015 Jun; 5(6):636-51. PubMed ID: 25829425
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Depletion of SAG/RBX2 E3 ubiquitin ligase suppresses prostate tumorigenesis via inactivation of the PI3K/AKT/mTOR axis.
    Tan M; Xu J; Siddiqui J; Feng F; Sun Y
    Mol Cancer; 2016 Dec; 15(1):81. PubMed ID: 27955654
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An in vitro system to characterize prostate cancer progression identified signaling required for self-renewal.
    Salah M; Nishimoto Y; Kohno S; Kondoh A; Kitajima S; Muranaka H; Nishiuchi T; Ibrahim A; Yoshida A; Takahashi C
    Mol Carcinog; 2016 Dec; 55(12):1974-1989. PubMed ID: 26621780
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Matrix metalloproteinases contribute distinct roles in neuroendocrine prostate carcinogenesis, metastasis, and angiogenesis progression.
    Littlepage LE; Sternlicht MD; Rougier N; Phillips J; Gallo E; Yu Y; Williams K; Brenot A; Gordon JI; Werb Z
    Cancer Res; 2010 Mar; 70(6):2224-34. PubMed ID: 20215503
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Murine cell lines derived from Pten null prostate cancer show the critical role of PTEN in hormone refractory prostate cancer development.
    Jiao J; Wang S; Qiao R; Vivanco I; Watson PA; Sawyers CL; Wu H
    Cancer Res; 2007 Jul; 67(13):6083-91. PubMed ID: 17616663
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.