These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 33186809)
61. Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset. Xu M; Qi S; Yue Y; Teng Y; Xu L; Yao Y; Qian W Biomed Eng Online; 2019 Jan; 18(1):2. PubMed ID: 30602393 [TBL] [Abstract][Full Text] [Related]
62. Evaluation of Rib Fractures on a Single-in-plane Image Reformation of the Rib Cage in CT Examinations. Dankerl P; Seuss H; Ellmann S; Cavallaro A; Uder M; Hammon M Acad Radiol; 2017 Feb; 24(2):153-159. PubMed ID: 27876272 [TBL] [Abstract][Full Text] [Related]
63. Evaluating AI rib fracture detections using follow-up CT scans. Zhou Q; Qin P; Luo J; Hu Q; Sun W; Chen B; Wang G Am J Emerg Med; 2023 Oct; 72():34-38. PubMed ID: 37478635 [TBL] [Abstract][Full Text] [Related]
64. Deep learning-based algorithm improved radiologists' performance in bone metastases detection on CT. Noguchi S; Nishio M; Sakamoto R; Yakami M; Fujimoto K; Emoto Y; Kubo T; Iizuka Y; Nakagomi K; Miyasa K; Satoh K; Nakamoto Y Eur Radiol; 2022 Nov; 32(11):7976-7987. PubMed ID: 35394186 [TBL] [Abstract][Full Text] [Related]
65. Polycystic liver: automatic segmentation using deep learning on CT is faster and as accurate compared to manual segmentation. Cayot B; Milot L; Nempont O; Vlachomitrou AS; Langlois-Jacques C; Dumortier J; Boillot O; Arnaud K; Barten TRM; Drenth JPH; Valette PJ Eur Radiol; 2022 Jul; 32(7):4780-4790. PubMed ID: 35142898 [TBL] [Abstract][Full Text] [Related]
66. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Tong N; Gou S; Yang S; Ruan D; Sheng K Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285 [TBL] [Abstract][Full Text] [Related]
67. Automatic rib unfolding in postmortem computed tomography: diagnostic evaluation of the OpenRib software compared with the autopsy in the detection of rib fractures. Kolopp M; Douis N; Urbaneja A; Baumann C; Gondim Teixeira PA; Blum A; Martrille L Int J Legal Med; 2020 Jan; 134(1):339-346. PubMed ID: 31734725 [TBL] [Abstract][Full Text] [Related]
68. Impact of deep learning-based multiorgan segmentation methods on patient-specific internal dosimetry in PET/CT imaging: A comparative study. Karimipourfard M; Sina S; Mahani H; Alavi M; Yazdi M J Appl Clin Med Phys; 2024 Feb; 25(2):e14254. PubMed ID: 38214349 [TBL] [Abstract][Full Text] [Related]
69. Detection and classification of mandibular fracture on CT scan using deep convolutional neural network. Wang X; Xu Z; Tong Y; Xia L; Jie B; Ding P; Bai H; Zhang Y; He Y Clin Oral Investig; 2022 Jun; 26(6):4593-4601. PubMed ID: 35218428 [TBL] [Abstract][Full Text] [Related]
70. A quantitative analysis of the improvement provided by comprehensive annotation on CT lesion detection using deep learning. Ma J; Yoon JH; Lu L; Yang H; Guo P; Yang D; Li J; Shen J; Schwartz LH; Zhao B J Appl Clin Med Phys; 2024 Sep; 25(9):e14434. PubMed ID: 39078867 [TBL] [Abstract][Full Text] [Related]
71. A deep learning framework for automated detection and quantitative assessment of liver trauma. Farzaneh N; Stein EB; Soroushmehr R; Gryak J; Najarian K BMC Med Imaging; 2022 Mar; 22(1):39. PubMed ID: 35260105 [TBL] [Abstract][Full Text] [Related]
72. VENet: Variational energy network for gland segmentation of pathological images and early gastric cancer diagnosis of whole slide images. Zhang S; Yuan Z; Zhou X; Wang H; Chen B; Wang Y Comput Methods Programs Biomed; 2024 Jun; 250():108178. PubMed ID: 38652995 [TBL] [Abstract][Full Text] [Related]
73. An automated two-stage approach to kidney and tumor segmentation in CT imaging. Yao N; Hu H; Han C; Nan J; Li Y; Zhu F Technol Health Care; 2024; 32(5):3279-3292. PubMed ID: 38875055 [TBL] [Abstract][Full Text] [Related]
74. Automatic detection of rib fractures: Are we there yet? Blum A; Gillet R; Urbaneja A; Gondim Teixeira P EBioMedicine; 2021 Jan; 63():103158. PubMed ID: 33278798 [No Abstract] [Full Text] [Related]
75. Enhanced reading time efficiency by use of automatically unfolded CT rib reformations in acute trauma. Bier G; Schabel C; Othman A; Bongers MN; Schmehl J; Ditt H; Nikolaou K; Bamberg F; Notohamiprodjo M Eur J Radiol; 2015 Nov; 84(11):2173-80. PubMed ID: 26226916 [TBL] [Abstract][Full Text] [Related]
76. CT diagnosis of Rib fractures and the prediction of acute respiratory failure. Livingston DH; Shogan B; John P; Lavery RF J Trauma; 2008 Apr; 64(4):905-11. PubMed ID: 18404055 [TBL] [Abstract][Full Text] [Related]
77. Clinically relevant deep learning for detection and quantification of geographic atrophy from optical coherence tomography: a model development and external validation study. Zhang G; Fu DJ; Liefers B; Faes L; Glinton S; Wagner S; Struyven R; Pontikos N; Keane PA; Balaskas K Lancet Digit Health; 2021 Oct; 3(10):e665-e675. PubMed ID: 34509423 [TBL] [Abstract][Full Text] [Related]
78. Fully-automated detection of small bowel carcinoid tumors in CT scans using deep learning. Shin SY; Shen TC; Wank SA; Summers RM Med Phys; 2023 Dec; 50(12):7865-7878. PubMed ID: 36988164 [TBL] [Abstract][Full Text] [Related]
79. Automated 3D Rendering of Ribs in 110 Polytrauma Patients: Strengths and Limitations. Khung S; Masset P; Duhamel A; Faivre JB; Flohr T; Remy J; Remy-Jardin M Acad Radiol; 2017 Feb; 24(2):146-152. PubMed ID: 27863898 [TBL] [Abstract][Full Text] [Related]
80. Deep Learning-Based Computed Tomography Image Standardization to Improve Generalizability of Deep Learning-Based Hepatic Segmentation. Lee SB; Hong Y; Cho YJ; Jeong D; Lee J; Yoon SH; Lee S; Choi YH; Cheon JE Korean J Radiol; 2023 Apr; 24(4):294-304. PubMed ID: 36907592 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]