These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33186852)

  • 1. Band gap measurement by nano-beam STEM with small off-axis angle transmission electron energy loss spectroscopy (TEELS).
    Wang YY; Jin Q; Zhuang K; Choi JK; Nxumalo J
    Ultramicroscopy; 2021 Jan; 220():113164. PubMed ID: 33186852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of the dielectric function of α-Al2O3 by transmission electron microscopy - Electron energy-loss spectroscopy without Cerenkov radiation effects.
    Sakaguchi N; Tanda L; Kunisada Y
    Ultramicroscopy; 2016 Oct; 169():37-43. PubMed ID: 27448199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the validity of the Čerenkov limit as a criterion for precise band gap measurements by VEELS.
    Erni R
    Ultramicroscopy; 2016 Jan; 160():80-83. PubMed ID: 26476018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and application of a relativistic Kramers-Kronig analysis algorithm.
    Eljarrat A; Koch CT
    Ultramicroscopy; 2019 Nov; 206():112825. PubMed ID: 31400584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optoelectronic properties of InAlN/GaN distributed bragg reflector heterostructure examined by valence electron energy loss spectroscopy.
    Eljarrat A; Estradé S; Gačević Z; Fernández-Garrido S; Calleja E; Magén C; Peiró F
    Microsc Microanal; 2012 Oct; 18(5):1143-54. PubMed ID: 23058502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Band-Gap Widening at the Cu(In,Ga)(S,Se)2 Surface: A Novel Determination Approach Using Reflection Electron Energy Loss Spectroscopy.
    Hauschild D; Handick E; Göhl-Gusenleitner S; Meyer F; Schwab H; Benkert A; Pohlner S; Palm J; Tougaard S; Heske C; Weinhardt L; Reinert F
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):21101-5. PubMed ID: 27463021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High energy-resolution electron energy-loss spectroscopy study of the dielectric properties of multi-shell nanoparticles.
    Nakahigashi N; Sato Y; Terauchi M; Uehara M
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i18. PubMed ID: 25359810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treating retardation effects in valence EELS spectra for Kramers-Kronig analysis.
    Stöger-Pollach M; Laister A; Schattschneider P
    Ultramicroscopy; 2008 Apr; 108(5):439-44. PubMed ID: 17689868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the measurement of dielectric function by TEM-EELS: avoiding the retardation effect.
    Sakaguchi N; Tanda L; Kunisada Y
    Microscopy (Oxf); 2016 Oct; 65(5):415-421. PubMed ID: 27385785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of dielectric function and bandgap of germanium telluride using monochromated electron energy-loss spectroscopy.
    Oh JS; Jo KJ; Kang MC; An BS; Kwon Y; Lim HW; Cho MH; Baik H; Yang CW
    Micron; 2023 Sep; 172():103487. PubMed ID: 37285687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of valence electron energy-loss spectra of aluminium nitride.
    Dorneich AD; French RH; Müllejans H; Loughin S; Rühle M
    J Microsc; 1998 Sep; 191(3):286-296. PubMed ID: 9767493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic structure analyses of BN network materials using high energy-resolution spectroscopy methods based on transmission electron microscopy.
    Terauchi M
    Microsc Res Tech; 2006 Jul; 69(7):531-7. PubMed ID: 16718665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retrieving the energy-loss function from valence electron energy-loss spectrum: Separation of bulk-, surface-losses and Cherenkov radiation.
    Meng Q; Wu L; Xin HL; Zhu Y
    Ultramicroscopy; 2018 Nov; 194():175-181. PubMed ID: 30149218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic and optical properties of Cu, CuO and Cu2O studied by electron spectroscopy.
    Tahir D; Tougaard S
    J Phys Condens Matter; 2012 May; 24(17):175002. PubMed ID: 22475683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bandgap measurement of thin dielectric films using monochromated STEM-EELS.
    Park J; Heo S; Chung JG; Kim H; Lee H; Kim K; Park GS
    Ultramicroscopy; 2009 Aug; 109(9):1183-8. PubMed ID: 19515492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring possibilities of band gap measurement with off-axis EELS in TEM.
    Korneychuk S; Partoens B; Guzzinati G; Ramaneti R; Derluyn J; Haenen K; Verbeeck J
    Ultramicroscopy; 2018 Jun; 189():76-84. PubMed ID: 29626835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution monochromated electron energy-loss spectroscopy of organic photovoltaic materials.
    Alexander JA; Scheltens FJ; Drummy LF; Durstock MF; Hage FS; Ramasse QM; McComb DW
    Ultramicroscopy; 2017 Sep; 180():125-132. PubMed ID: 28284703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative parameters for the examination of InGaN QW multilayers by low-loss EELS.
    Eljarrat A; López-Conesa L; Magén C; García-Lepetit N; Gačević Ž; Calleja E; Peiró F; Estradé S
    Phys Chem Chem Phys; 2016 Aug; 18(33):23264-76. PubMed ID: 27499340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retrieving the electronic properties of silicon nanocrystals embedded in a dielectric matrix by low-loss EELS.
    Eljarrat A; López-Conesa L; López-Vidrier J; Hernández S; Garrido B; Magén C; Peiró F; Estradé S
    Nanoscale; 2014 Dec; 6(24):14971-83. PubMed ID: 25363292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring bandgap states in individual non-stoichiometric oxide nanoparticles using monochromated STEM EELS: The Praseodymium-ceria case.
    Bowman WJ; March K; Hernandez CA; Crozier PA
    Ultramicroscopy; 2016 Aug; 167():5-10. PubMed ID: 27152715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.