These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33186966)

  • 1. Fine features of optical potential well induced by nonlinearity.
    Zhou LM; Qin Y; Yang Y; Jiang Y
    Opt Lett; 2020 Nov; 45(22):6266-6269. PubMed ID: 33186966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle manipulation beyond the diffraction limit using structured super-oscillating light beams.
    Singh BK; Nagar H; Roichman Y; Arie A
    Light Sci Appl; 2017 Sep; 6(9):e17050. PubMed ID: 30167295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generating a three-dimensional hollow spot with sub-diffraction transverse size by a focused cylindrical vector wave.
    Wu Z; Jin Q; Zhang S; Zhang K; Wang L; Dai L; Wen Z; Zhang Z; Liang G; Liu Y; Chen G
    Opt Express; 2018 Apr; 26(7):7866-7875. PubMed ID: 29715761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creation of Sub-diffraction Longitudinally Polarized Spot by Focusing Radially Polarized Light with Binary Phase Lens.
    Yu AP; Chen G; Zhang ZH; Wen ZQ; Dai LR; Zhang K; Jiang SL; Wu ZX; Li YY; Wang CT; Luo XG
    Sci Rep; 2016 Dec; 6():38859. PubMed ID: 27941852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam.
    Garcés-Chávez V; McGloin D; Melville H; Sibbett W; Dholakia K
    Nature; 2002 Sep; 419(6903):145-7. PubMed ID: 12226659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct measurement of the oscillation frequency in an optical-tweezers trap by parametric excitation.
    Joykutty J; Mathur V; Venkataraman V; Natarajan V
    Phys Rev Lett; 2005 Nov; 95(19):193902. PubMed ID: 16383979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths.
    Yuan G; Rogers ET; Roy T; Adamo G; Shen Z; Zheludev NI
    Sci Rep; 2014 Sep; 4():6333. PubMed ID: 25208611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and Operation of a Nano-Optical Conveyor Belt.
    Ryan J; Zheng Y; Hansen P; Hesselink L
    J Vis Exp; 2015 Aug; (102):e52842. PubMed ID: 26381708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the micro-rheological properties of aerosol particles using optical tweezers.
    Power RM; Reid JP
    Rep Prog Phys; 2014 Jul; 77(7):074601. PubMed ID: 24994710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bessel beam optical tweezers for manipulating superparamagnetic beads.
    Andrade UMS; Garcia AM; Rocha MS
    Appl Opt; 2021 Apr; 60(12):3422-3429. PubMed ID: 33983247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing conical refraction optical tweezers.
    McDonald C; McDougall C; Rafailov E; McGloin D
    Opt Lett; 2014 Dec; 39(23):6691-4. PubMed ID: 25490654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optomechanically induced optical trapping system based on photonic crystal cavities.
    Monterrosas-Romero M; Alavi SK; Koistinen EM; Hong S
    Opt Express; 2023 Jun; 31(12):20398-20409. PubMed ID: 37381435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physics of optical tweezers.
    Nieminen TA; Knöner G; Heckenberg NR; Rubinsztein-Dunlop H
    Methods Cell Biol; 2007; 82():207-36. PubMed ID: 17586258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinearity-induced nanoparticle circumgyration at sub-diffraction scale.
    Qin Y; Zhou LM; Huang L; Jin Y; Shi H; Shi S; Guo H; Xiao L; Yang Y; Qiu CW; Jiang Y
    Nat Commun; 2021 Jun; 12(1):3722. PubMed ID: 34140523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic axial control over optically levitating particles in air with an electrically-tunable variable-focus lens.
    Zhu W; Eckerskorn N; Upadhya A; Li L; Rode AV; Lee WM
    Biomed Opt Express; 2016 Jul; 7(7):2902-11. PubMed ID: 27446715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling between axial and radial motions of microscopic particle trapped in the intracavity optical tweezers.
    Xiao G; Kuang T; Luo B; Xiong W; Han X; Chen X; Luo H
    Opt Express; 2019 Dec; 27(25):36653-36661. PubMed ID: 31873439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of external forces on discrete motion within holographic optical tweezers.
    Eriksson E; Keen S; Leach J; Goksör M; Padgett MJ
    Opt Express; 2007 Dec; 15(26):18268-74. PubMed ID: 19551124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical micromanipulations in the non-diffractive regime.
    Varghese SS; Gu M
    J Biophotonics; 2010 Apr; 3(4):207-15. PubMed ID: 20301122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulse laser assisted optical tweezers for biomedical applications.
    Sugiura T; Maeda S; Honda A
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4479-81. PubMed ID: 23366922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical concatenation of a large number of beads with a single-beam optical tweezer.
    Avila R; Ascencio-Rodríguez J; Tapia-Merino D; Rodríguez-Herrera OG; González-Suárez A
    Opt Lett; 2017 Apr; 42(7):1393-1396. PubMed ID: 28362777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.