These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33187015)

  • 21. Transcriptome sequencing of two wild barley (Hordeum spontaneum L.) ecotypes differentially adapted to drought stress reveals ecotype-specific transcripts.
    Bedada G; Westerbergh A; Müller T; Galkin E; Bdolach E; Moshelion M; Fridman E; Schmid KJ
    BMC Genomics; 2014 Nov; 15(1):995. PubMed ID: 25408241
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adaptive mechanisms and genomic plasticity for drought tolerance identified in European black poplar (Populus nigra L.).
    Viger M; Smith HK; Cohen D; Dewoody J; Trewin H; Steenackers M; Bastien C; Taylor G
    Tree Physiol; 2016 Jul; 36(7):909-28. PubMed ID: 27174702
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Epigenetic switching as a strategy for quick adaptation while attenuating biochemical noise.
    Gómez-Schiavon M; Buchler NE
    PLoS Comput Biol; 2019 Oct; 15(10):e1007364. PubMed ID: 31658246
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Population differentiation in a Mediterranean relict shrub: the potential role of local adaptation for coping with climate change.
    Lázaro-Nogal A; Matesanz S; Hallik L; Krasnova A; Traveset A; Valladares F
    Oecologia; 2016 Apr; 180(4):1075-90. PubMed ID: 26662734
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of drought-responsive signalling network in two contrasting rice cultivars using transcriptome-based approach.
    Borah P; Sharma E; Kaur A; Chandel G; Mohapatra T; Kapoor S; Khurana JP
    Sci Rep; 2017 Feb; 7():42131. PubMed ID: 28181537
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A change in climate causes rapid evolution of multiple life-history traits and their interactions in an annual plant.
    Franks SJ; Weis AE
    J Evol Biol; 2008 Sep; 21(5):1321-34. PubMed ID: 18557796
    [TBL] [Abstract][Full Text] [Related]  

  • 27.
    Muthusamy M; Yoon EK; Kim JA; Jeong MJ; Lee SI
    Genes (Basel); 2020 Feb; 11(2):. PubMed ID: 32050656
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The evolution of drought escape and avoidance in natural herbaceous populations.
    Kooyers NJ
    Plant Sci; 2015 May; 234():155-62. PubMed ID: 25804818
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic mapping of morpho-physiological traits involved during reproductive stage drought tolerance in rice.
    Barik SR; Pandit E; Pradhan SK; Mohanty SP; Mohapatra T
    PLoS One; 2019; 14(12):e0214979. PubMed ID: 31846460
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Topological features of a gene co-expression network predict patterns of natural diversity in environmental response.
    Des Marais DL; Guerrero RF; Lasky JR; Scarpino SV
    Proc Biol Sci; 2017 Jun; 284(1856):. PubMed ID: 28615505
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genomic adaptation to drought in wild barley is driven by edaphic natural selection at the Tabigha Evolution Slope.
    Wang X; Chen ZH; Yang C; Zhang X; Jin G; Chen G; Wang Y; Holford P; Nevo E; Zhang G; Dai F
    Proc Natl Acad Sci U S A; 2018 May; 115(20):5223-5228. PubMed ID: 29712833
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Shedding light on the evolution of plasticity in natural populations.
    Hyma KE; Caicedo AL
    Mol Ecol; 2011 Sep; 20(17):3491-3. PubMed ID: 21884290
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid microevolution during recent range expansion to harsh environments.
    Chen Y; Shenkar N; Ni P; Lin Y; Li S; Zhan A
    BMC Evol Biol; 2018 Dec; 18(1):187. PubMed ID: 30526493
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Environment-to-phenotype mapping and adaptation strategies in varying environments.
    Xue B; Sartori P; Leibler S
    Proc Natl Acad Sci U S A; 2019 Jul; 116(28):13847-13855. PubMed ID: 31221749
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced Gene Expression Rather than Natural Polymorphism in Coding Sequence of the OsbZIP23 Determines Drought Tolerance and Yield Improvement in Rice Genotypes.
    Dey A; Samanta MK; Gayen S; Sen SK; Maiti MK
    PLoS One; 2016; 11(3):e0150763. PubMed ID: 26959651
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tibetan and Andean patterns of adaptation to high-altitude hypoxia.
    Beall CM
    Hum Biol; 2000 Feb; 72(1):201-28. PubMed ID: 10721618
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the hidden temporal dynamics of plant adaptation.
    Brown KE; Koenig D
    Curr Opin Plant Biol; 2022 Dec; 70():102298. PubMed ID: 36126489
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Triangulating the genetic basis of adaptation to multifarious selection.
    Pfrender ME
    Mol Ecol; 2012 May; 21(9):2051-3. PubMed ID: 22509765
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Challenges and potential solutions for studying the genetic and phenotypic architecture of adaptation in microbes.
    Brettner L; Ho WC; Schmidlin K; Apodaca S; Eder R; Geiler-Samerotte K
    Curr Opin Genet Dev; 2022 Aug; 75():101951. PubMed ID: 35797741
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding Organismal Capacity to Respond to Anthropogenic Change: Barriers and Solutions.
    Gabor CR; Kivlin SN; Hua J; Bickford N; Reiskind MOB; Wright TF
    Integr Comp Biol; 2022 Feb; 61(6):2132-2144. PubMed ID: 34279616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.