These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 33187080)

  • 1. Soil Metaproteomics for the Study of the Relationships Between Microorganisms and Plants: A Review of Extraction Protocols and Ecological Insights.
    Tartaglia M; Bastida F; Sciarrillo R; Guarino C
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33187080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metaproteomics to unravel major microbial players in leaf litter and soil environments: challenges and perspectives.
    Becher D; Bernhardt J; Fuchs S; Riedel K
    Proteomics; 2013 Oct; 13(18-19):2895-909. PubMed ID: 23894095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Applications of soil metaproteomics in soil pollution assessment: a review].
    Zhang X; Li F; Liu TT; Chen YX
    Ying Yong Sheng Tai Xue Bao; 2012 Oct; 23(10):2923-30. PubMed ID: 23359959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soil Metaproteomics for Microbial Community Profiling: Methodologies and Challenges.
    Pan H; Wattiez R; Gillan D
    Curr Microbiol; 2024 Jul; 81(8):257. PubMed ID: 38955825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of metaproteomics in crop rhizospheric soil.
    Wang HB; Zhang ZX; Li H; He HB; Fang CX; Zhang AJ; Li QS; Chen RS; Guo XK; Lin HF; Wu LK; Lin S; Chen T; Lin RY; Peng XX; Lin WX
    J Proteome Res; 2011 Mar; 10(3):932-40. PubMed ID: 21142081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A metaproteomic approach dissecting major bacterial functions in the rhizosphere of plants living in serpentine soil.
    Mattarozzi M; Manfredi M; Montanini B; Gosetti F; Sanangelantoni AM; Marengo E; Careri M; Visioli G
    Anal Bioanal Chem; 2017 Mar; 409(9):2327-2339. PubMed ID: 28083663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil and leaf litter metaproteomics-a brief guideline from sampling to understanding.
    Keiblinger KM; Fuchs S; Zechmeister-Boltenstern S; Riedel K
    FEMS Microbiol Ecol; 2016 Nov; 92(11):. PubMed ID: 27549116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metaproteomics of soils from semiarid environment: functional and phylogenetic information obtained with different protein extraction methods.
    Bastida F; Hernández T; García C
    J Proteomics; 2014 Apr; 101():31-42. PubMed ID: 24530626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sample Preparation for Metaproteome Analyses of Soil and Leaf Litter.
    Keiblinger KM; Riedel K
    Methods Mol Biol; 2018; 1841():303-318. PubMed ID: 30259495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. It's all about functionality: How can metaproteomics help us to discuss the attributes of ecological relevance in soil?
    Bastida F; Jehmlich N
    J Proteomics; 2016 Jul; 144():159-61. PubMed ID: 27265322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extraction of Proteins from Soil.
    Zheng L; Xiong Y; Wang R; Zhou P; Pan Y; Dong X; Shen R; Lan P
    Methods Mol Biol; 2024; 2820():29-39. PubMed ID: 38941012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rumen metaproteomics: Closer to linking rumen microbial function to animal productivity traits.
    Andersen TO; Kunath BJ; Hagen LH; Arntzen MØ; Pope PB
    Methods; 2021 Feb; 186():42-51. PubMed ID: 32758682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of a Detergent-Based Method for Direct Microbial Cellular Lysis/Proteome Extraction from Soil Samples for Metaproteomics Studies.
    Chourey K; Hettich RL
    Methods Mol Biol; 2018; 1841():293-302. PubMed ID: 30259494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing the power of interpretation for soil metaproteomics data.
    Jouffret V; Miotello G; Culotta K; Ayrault S; Pible O; Armengaud J
    Microbiome; 2021 Sep; 9(1):195. PubMed ID: 34587999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A decade of metaproteomics: where we stand and what the future holds.
    Wilmes P; Heintz-Buschart A; Bond PL
    Proteomics; 2015 Oct; 15(20):3409-17. PubMed ID: 26315987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Function is what counts: how microbial community complexity affects species, proteome and pathway coverage in metaproteomics.
    Lohmann P; Schäpe SS; Haange SB; Oliphant K; Allen-Vercoe E; Jehmlich N; Von Bergen M
    Expert Rev Proteomics; 2020 Feb; 17(2):163-173. PubMed ID: 32174200
    [No Abstract]   [Full Text] [Related]  

  • 17. Assessing the impact of protein extraction methods for human gut metaproteomics.
    Zhang X; Li L; Mayne J; Ning Z; Stintzi A; Figeys D
    J Proteomics; 2018 May; 180():120-127. PubMed ID: 28705725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized Extraction Method To Remove Humic Acid Interferences from Soil Samples Prior to Microbial Proteome Measurements.
    Qian C; Hettich RL
    J Proteome Res; 2017 Jul; 16(7):2537-2546. PubMed ID: 28537741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct cellular lysis/protein extraction protocol for soil metaproteomics.
    Chourey K; Jansson J; VerBerkmoes N; Shah M; Chavarria KL; Tom LM; Brodie EL; Hettich RL
    J Proteome Res; 2010 Dec; 9(12):6615-22. PubMed ID: 20954746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Challenges and perspectives of metaproteomic data analysis.
    Heyer R; Schallert K; Zoun R; Becher B; Saake G; Benndorf D
    J Biotechnol; 2017 Nov; 261():24-36. PubMed ID: 28663049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.