These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Metabolic phenotyping of acquired ampicillin resistance using microbial volatiles from Escherichia coli cultures. Dixon B; Ahmed WM; Mohamed AA; Felton T; Fowler SJ J Appl Microbiol; 2022 Oct; 133(4):2445-2456. PubMed ID: 35835588 [TBL] [Abstract][Full Text] [Related]
6. Initial study of three different pathogenic microorganisms by gas chromatography-mass spectrometry. Karami N; Mirzajani F; Rezadoost H; Karimi A; Fallah F; Ghassempour A; Aliahmadi A F1000Res; 2017; 6():1415. PubMed ID: 29375811 [No Abstract] [Full Text] [Related]
7. Volatile organic compounds in headspace characterize isolated bacterial strains independent of growth medium or antibiotic sensitivity. Hintzen KFH; Blanchet L; Smolinska A; Boumans ML; Stobberingh EE; Dallinga JW; Lubbers T; van Schooten FJ; Boots AW PLoS One; 2024; 19(1):e0297086. PubMed ID: 38277384 [TBL] [Abstract][Full Text] [Related]
8. GC-MS profiling of volatile metabolites produced by Filipiak W; Żuchowska K; Marszałek M; Depka D; Bogiel T; Warmuzińska N; Bojko B Front Mol Biosci; 2022; 9():1019290. PubMed ID: 36330222 [TBL] [Abstract][Full Text] [Related]
9. Rapid in vitro differentiation of bacteria by ion mobility spectrometry. Steppert I; Schönfelder J; Schultz C; Kuhlmeier D Appl Microbiol Biotechnol; 2021 May; 105(10):4297-4307. PubMed ID: 33974116 [TBL] [Abstract][Full Text] [Related]
10. Identification of volatile organic compounds produced by bacteria using HS-SPME-GC-MS. Tait E; Perry JD; Stanforth SP; Dean JR J Chromatogr Sci; 2014 Apr; 52(4):363-73. PubMed ID: 23661670 [TBL] [Abstract][Full Text] [Related]
11. Comparative analysis of volatile organic compounds for the classification and identification of mycobacterial species. Küntzel A; Oertel P; Fischer S; Bergmann A; Trefz P; Schubert J; Miekisch W; Reinhold P; Köhler H PLoS One; 2018; 13(3):e0194348. PubMed ID: 29558492 [TBL] [Abstract][Full Text] [Related]
12. Headspace analyses using multi-capillary column-ion mobility spectrometry allow rapid pathogen differentiation in hospital-acquired pneumonia relevant bacteria. Kunze-Szikszay N; Euler M; Kuhns M; Thieß M; Groß U; Quintel M; Perl T BMC Microbiol; 2021 Feb; 21(1):69. PubMed ID: 33641676 [TBL] [Abstract][Full Text] [Related]
13. In vitro volatile organic compound profiling using GC×GC-TOFMS to differentiate bacteria associated with lung infections: a proof-of-concept study. Nizio KD; Perrault KA; Troobnikoff AN; Ueland M; Shoma S; Iredell JR; Middleton PG; Forbes SL J Breath Res; 2016 Apr; 10(2):026008. PubMed ID: 27120170 [TBL] [Abstract][Full Text] [Related]
18. GC-MS metabolomics-based approach for the identification of a potential VOC-biomarker panel in the urine of renal cell carcinoma patients. Monteiro M; Moreira N; Pinto J; Pires-Luís AS; Henrique R; Jerónimo C; Bastos ML; Gil AM; Carvalho M; Guedes de Pinho P J Cell Mol Med; 2017 Sep; 21(9):2092-2105. PubMed ID: 28378454 [TBL] [Abstract][Full Text] [Related]
19. Uncomplicated urinary tract infections in Swedish primary care; etiology, resistance and treatment. Kornfält Isberg H; Melander E; Hedin K; Mölstad S; Beckman A BMC Infect Dis; 2019 Feb; 19(1):155. PubMed ID: 30760219 [TBL] [Abstract][Full Text] [Related]
20. Volatile organic compounds generated by cultures of bacteria and viruses associated with respiratory infections. Abd El Qader A; Lieberman D; Shemer Avni Y; Svobodin N; Lazarovitch T; Sagi O; Zeiri Y Biomed Chromatogr; 2015 Dec; 29(12):1783-90. PubMed ID: 26033043 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]