These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 33187348)

  • 1. Gas Crosstalk between PFPE-PEG-PFPE Triblock Copolymer Surfactant-Based Microdroplets and Monitoring Bacterial Gas Metabolism with Droplet-Based Microfluidics.
    Ki S; Kang DK
    Biosensors (Basel); 2020 Nov; 10(11):. PubMed ID: 33187348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatible fluorinated polyglycerols for droplet microfluidics as an alternative to PEG-based copolymer surfactants.
    Wagner O; Thiele J; Weinhart M; Mazutis L; Weitz DA; Huck WT; Haag R
    Lab Chip; 2016 Jan; 16(1):65-9. PubMed ID: 26626826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Click Chemistry Approaches to Expand the Repertoire of PEG-based Fluorinated Surfactants for Droplet Microfluidics.
    Scanga R; Chrastecka L; Mohammad R; Meadows A; Quan PL; Brouzes E
    RSC Adv; 2018; 8(23):12960-12974. PubMed ID: 31592185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Perfluoropolyether Microfluidic Devices Using Laser Engraving for Uniform Droplet Production.
    Kim ES; Cho M; Choi I; Choi SW
    Micromachines (Basel); 2024 Apr; 15(5):. PubMed ID: 38793172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear triglycerol-based fluorosurfactants show high potential for droplet-microfluidics-based biochemical assays.
    Chowdhury MS; Zheng W; Singh AK; Ong ILH; Hou Y; Heyman JA; Faghani A; Amstad E; Weitz DA; Haag R
    Soft Matter; 2021 Aug; 17(31):7260-7267. PubMed ID: 34337643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fast and efficient microfluidic system for highly selective one-to-one droplet fusion.
    Mazutis L; Baret JC; Griffiths AD
    Lab Chip; 2009 Sep; 9(18):2665-72. PubMed ID: 19704982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Droplet shape control using microfluidics and designer biosurfactants.
    Gao Y; Zhao CX; Sainsbury F
    J Colloid Interface Sci; 2021 Feb; 584():528-538. PubMed ID: 33129162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Dynamic Interfacial Tensiometry (μDIT).
    Brosseau Q; Vrignon J; Baret JC
    Soft Matter; 2014 May; 10(17):3066-76. PubMed ID: 24695668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge-controlled microfluidic formation of lipid-based single- and multicompartment systems.
    Haller B; Göpfrich K; Schröter M; Janiesch JW; Platzman I; Spatz JP
    Lab Chip; 2018 Aug; 18(17):2665-2674. PubMed ID: 30070293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A perfluorobutylpentane (F4H5)-based solution for the removal of residual emulsified silicone oil.
    Chan YK; Cheng HC; Wu J; Tang YHM; Chan ST; Wong D; Shum HC
    Acta Ophthalmol; 2018 Feb; 96(1):e38-e45. PubMed ID: 28616869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorinated Pickering Emulsions with Nonadsorbing Interfaces for Droplet-based Enzymatic Assays.
    Pan M; Lyu F; Tang SK
    Anal Chem; 2015 Aug; 87(15):7938-43. PubMed ID: 26153615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemically induced coalescence in droplet-based microfluidics.
    Akartuna I; Aubrecht DM; Kodger TE; Weitz DA
    Lab Chip; 2015 Feb; 15(4):1140-4. PubMed ID: 25537080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the role of hydrophilic chain length in amphiphilic perfluoropolyether/poly(ethylene glycol) networks: towards high-performance antifouling coatings.
    Wang Y; Pitet LM; Finlay JA; Brewer LH; Cone G; Betts DE; Callow ME; Callow JA; Wendt DE; Hillmyer MA; DeSimonea JM
    Biofouling; 2011; 27(10):1139-50. PubMed ID: 22087876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailored Fluorosurfactants through Controlled/Living Radical Polymerization for Highly Stable Microfluidic Droplet Generation.
    Li X; Tang SY; Zhang Y; Zhu J; Forgham H; Zhao CX; Zhang C; Davis TP; Qiao R
    Angew Chem Int Ed Engl; 2024 Jan; 63(3):e202315552. PubMed ID: 38038248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrate measurement in droplet flow: gas-mediated crosstalk and correction.
    Nightingale AM; Hassan SU; Evans GWH; Coleman SM; Niu X
    Lab Chip; 2018 Jun; 18(13):1903-1913. PubMed ID: 29877549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uniform amplification of phage display libraries in monodisperse emulsions.
    Matochko WL; Ng S; Jafari MR; Romaniuk J; Tang SK; Derda R
    Methods; 2012 Sep; 58(1):18-27. PubMed ID: 22819853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creating biocompatible oil-water interfaces without synthesis: direct interactions between primary amines and carboxylated perfluorocarbon surfactants.
    DeJournette CJ; Kim J; Medlen H; Li X; Vincent LJ; Easley CJ
    Anal Chem; 2013 Nov; 85(21):10556-64. PubMed ID: 24070333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microneedle-assisted microfluidic flow focusing for versatile and high throughput water-in-water droplet generation.
    Jeyhani M; Gnyawali V; Abbasi N; Hwang DK; Tsai SSH
    J Colloid Interface Sci; 2019 Oct; 553():382-389. PubMed ID: 31226629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Droplet microfluidics for single-cell analysis.
    Brouzes E
    Methods Mol Biol; 2012; 853():105-39. PubMed ID: 22323144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic diamagnetic water-in-water droplets: a biocompatible cell encapsulation and manipulation platform.
    Navi M; Abbasi N; Jeyhani M; Gnyawali V; Tsai SSH
    Lab Chip; 2018 Nov; 18(22):3361-3370. PubMed ID: 30375625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.