These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33187421)

  • 1. Toward a systematic improvement of the fixed-node approximation in diffusion Monte Carlo for solids-A case study in diamond.
    Benali A; Gasperich K; Jordan KD; Applencourt T; Luo Y; Bennett MC; Krogel JT; Shulenburger L; Kent PRC; Loos PF; Scemama A; Caffarel M
    J Chem Phys; 2020 Nov; 153(18):184111. PubMed ID: 33187421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fixed-node diffusion Monte Carlo potential energy curve of the fluorine molecule F2 using selected configuration interaction trial wavefunctions.
    Giner E; Scemama A; Caffarel M
    J Chem Phys; 2015 Jan; 142(4):044115. PubMed ID: 25637977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate nonrelativistic ground-state energies of 3d transition metal atoms.
    Scemama A; Applencourt T; Giner E; Caffarel M
    J Chem Phys; 2014 Dec; 141(24):244110. PubMed ID: 25554136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-Jastrow trial wavefunctions for electronic structure calculations with quantum Monte Carlo.
    Bouabça T; Braïda B; Caffarel M
    J Chem Phys; 2010 Jul; 133(4):044111. PubMed ID: 20687637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Singlet-triplet gaps in diradicals obtained with diffusion quantum Monte Carlo using a Slater-Jastrow trial wavefunction with a minimum number of determinants.
    Zhou X; Wang F
    Phys Chem Chem Phys; 2019 Sep; 21(36):20422-20431. PubMed ID: 31501831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusion Monte Carlo method on small boron clusters using single- and multi- determinant-Jastrow trial wavefunctions.
    Peng Y; Zhou X; Wang Z; Wang F
    J Chem Phys; 2021 Jan; 154(2):024301. PubMed ID: 33445915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Communication: Toward an improved control of the fixed-node error in quantum Monte Carlo: The case of the water molecule.
    Caffarel M; Applencourt T; Giner E; Scemama A
    J Chem Phys; 2016 Apr; 144(15):151103. PubMed ID: 27389201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Taming the fixed-node error in diffusion Monte Carlo via range separation.
    Scemama A; Giner E; Benali A; Loos PF
    J Chem Phys; 2020 Nov; 153(17):174107. PubMed ID: 33167659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion quantum Monte Carlo method on diradicals using single- and multi-determinant-Jastrow trial wavefunctions and different orbitals.
    Rao L; Wang F
    J Chem Phys; 2022 Mar; 156(12):124308. PubMed ID: 35364895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-orthogonal determinants in multi-Slater-Jastrow trial wave functions for fixed-node diffusion Monte Carlo.
    Pathak S; Wagner LK
    J Chem Phys; 2018 Dec; 149(23):234104. PubMed ID: 30579315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Convergence to the fixed-node limit in deep variational Monte Carlo.
    Schätzle Z; Hermann J; Noé F
    J Chem Phys; 2021 Mar; 154(12):124108. PubMed ID: 33810658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum Monte Carlo with very large multideterminant wavefunctions.
    Scemama A; Applencourt T; Giner E; Caffarel M
    J Comput Chem; 2016 Jul; 37(20):1866-75. PubMed ID: 27302337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deterministic Construction of Nodal Surfaces within Quantum Monte Carlo: The Case of FeS.
    Scemama A; Garniron Y; Caffarel M; Loos PF
    J Chem Theory Comput; 2018 Mar; 14(3):1395-1402. PubMed ID: 29376369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of single particle orbital sets and configuration selection on multideterminant wavefunctions in quantum Monte Carlo.
    Clay RC; Morales MA
    J Chem Phys; 2015 Jun; 142(23):234103. PubMed ID: 26093546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of the Diffusion Quantum Monte Carlo Method with a Single-Slater-Jastrow Trial Wavefunction Using Natural Orbitals and Density Functional Theory Orbitals on Atomization Energies of the Gaussian-2 Set.
    Wang T; Zhou X; Wang F
    J Phys Chem A; 2019 May; 123(17):3809-3817. PubMed ID: 30950620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative estimation of localization errors of 3d transition metal pseudopotentials in diffusion Monte Carlo.
    Dzubak AL; Krogel JT; Reboredo FA
    J Chem Phys; 2017 Jul; 147(2):024102. PubMed ID: 28711049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new scheme for fixed node diffusion quantum Monte Carlo with pseudopotentials: Improving reproducibility and reducing the trial-wave-function bias.
    Zen A; Brandenburg JG; Michaelides A; Alfè D
    J Chem Phys; 2019 Oct; 151(13):134105. PubMed ID: 31594339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitation energies from diffusion Monte Carlo using selected configuration interaction nodes.
    Scemama A; Benali A; Jacquemin D; Caffarel M; Loos PF
    J Chem Phys; 2018 Jul; 149(3):034108. PubMed ID: 30037241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Barrier heights of hydrogen-transfer reactions with diffusion quantum monte carlo method.
    Zhou X; Wang F
    J Comput Chem; 2017 Apr; 38(11):798-806. PubMed ID: 28251681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond Single-Reference Fixed-Node Approximation in
    Nakano K; Sorella S; Alfè D; Zen A
    J Chem Theory Comput; 2024 Jun; 20(11):4591-4604. PubMed ID: 38788330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.