These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 33187441)

  • 1. On the role of non-diagonal system-environment interactions in bridge-mediated electron transfer.
    Acharyya N; Ovcharenko R; Fingerhut BP
    J Chem Phys; 2020 Nov; 153(18):185101. PubMed ID: 33187441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing and Exploiting the Interplay between Nuclear and Electronic Motion in Charge Transfer Processes.
    Delor M; Sazanovich IV; Towrie M; Weinstein JA
    Acc Chem Res; 2015 Apr; 48(4):1131-9. PubMed ID: 25789559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effectiveness of perturbation theory approaches for computing non-condon electron transfer dynamics in condensed phases.
    Cook WR; Coalson RD; Evans DG
    J Phys Chem B; 2009 Aug; 113(33):11437-47. PubMed ID: 19630413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Singlet energy transfer in porphyrin-based donor-bridge-acceptor systems: interaction between bridge length and bridge energy.
    Pettersson K; Kyrychenko A; Rönnow E; Ljungdahl T; Mårtensson J; Albinsson B
    J Phys Chem A; 2006 Jan; 110(1):310-8. PubMed ID: 16392870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the donor-bridge energy gap on the electron-transfer mechanism in donor-bridge-acceptor systems.
    Sim E
    J Phys Chem B; 2005 Jun; 109(23):11829-35. PubMed ID: 16852452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steering electrons on moving pathways.
    Beratan DN; Skourtis SS; Balabin IA; Balaeff A; Keinan S; Venkatramani R; Xiao D
    Acc Chem Res; 2009 Oct; 42(10):1669-78. PubMed ID: 19645446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron transfer mechanism and the locality of the system-bath interaction: a comparison of local, semilocal, and pure dephasing models.
    Weiss EA; Katz G; Goldsmith RH; Wasielewski MR; Ratner MA; Kosloff R; Nitzan A
    J Chem Phys; 2006 Feb; 124(7):74501. PubMed ID: 16497051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast charge transfer dynamics in supramolecular Pt(II) donor-bridge-acceptor assemblies: the effect of vibronic coupling.
    Scattergood PA; Delor M; Sazanovich IV; Towrie M; Weinstein JA
    Faraday Discuss; 2015; 185():69-86. PubMed ID: 26428717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interplay of Direct and Indirect Charge-Transfer Pathways in Donor-Bridge-Acceptor Systems.
    Liu J; Segal D
    J Phys Chem B; 2019 Jul; 123(28):6099-6110. PubMed ID: 31283238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How donor-bridge-acceptor energetics influence electron tunneling dynamics and their distance dependences.
    Wenger OS
    Acc Chem Res; 2011 Jan; 44(1):25-35. PubMed ID: 20945886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward control of electron transfer in donor-acceptor molecules by bond-specific infrared excitation.
    Delor M; Scattergood PA; Sazanovich IV; Parker AW; Greetham GM; Meijer AJ; Towrie M; Weinstein JA
    Science; 2014 Dec; 346(6216):1492-5. PubMed ID: 25525241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nodeless vibrational amplitudes and quantum nonadiabatic dynamics in the nested funnel for a pseudo Jahn-Teller molecule or homodimer.
    Peters WK; Tiwari V; Jonas DM
    J Chem Phys; 2017 Nov; 147(19):194306. PubMed ID: 29166106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phonon-driven exciton dissociation at donor-acceptor polymer heterojunctions: direct versus bridge-mediated vibronic coupling pathways.
    Tamura H; Ramon JG; Bittner ER; Burghardt I
    J Phys Chem B; 2008 Jan; 112(2):495-506. PubMed ID: 18081341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational gating of long distance electron transfer through wire-like bridges in donor-bridge-acceptor molecules.
    Davis WB; Ratner MA; Wasielewski MR
    J Am Chem Soc; 2001 Aug; 123(32):7877-86. PubMed ID: 11493061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of bridge-mediated pathways for long-range charge transfer systems.
    Sim E; Kim H
    J Phys Chem B; 2006 Aug; 110(34):16803-7. PubMed ID: 16927964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Coherent Tunneling and Incoherent Hopping on the Charge Transfer Mechanism in Linear Donor-Bridge-Acceptor Systems.
    Li G; Govind N; Ratner MA; Cramer CJ; Gagliardi L
    J Phys Chem Lett; 2015 Dec; 6(24):4889-97. PubMed ID: 26554424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibronic and Coherent Effects on Interfacial Electron Transfer Dynamics.
    Torres A; Oliboni RS; Rego LG
    J Phys Chem Lett; 2015 Dec; 6(24):4927-35. PubMed ID: 26606950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-Electron Transfer Pathways.
    Lin J; Balamurugan D; Zhang P; Skourtis SS; Beratan DN
    J Phys Chem B; 2015 Jun; 119(24):7589-97. PubMed ID: 25583181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of bridge-mediated electron transfer: a TDDFT electronic dynamics study.
    Ding F; Chapman CT; Liang W; Li X
    J Chem Phys; 2012 Dec; 137(22):22A512. PubMed ID: 23249049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge recombination versus charge separation in donor-bridge-acceptor systems.
    Wiberg J; Guo L; Pettersson K; Nilsson D; Ljungdahl T; Mårtensson J; Albinsson B
    J Am Chem Soc; 2007 Jan; 129(1):155-63. PubMed ID: 17199294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.