These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 33187537)

  • 1. DLDTI: a learning-based framework for drug-target interaction identification using neural networks and network representation.
    Zhao Y; Zheng K; Guan B; Guo M; Song L; Gao J; Qu H; Wang Y; Shi D; Zhang Y
    J Transl Med; 2020 Nov; 18(1):434. PubMed ID: 33187537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An end-to-end heterogeneous graph representation learning-based framework for drug-target interaction prediction.
    Peng J; Wang Y; Guan J; Li J; Han R; Hao J; Wei Z; Shang X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33517357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graph-DTI: A New Model for Drug-target Interaction Prediction Based on Heterogenous Network Graph Embedding.
    Qu X; Du G; Hu J; Cai Y
    Curr Comput Aided Drug Des; 2024; 20(6):1013-1024. PubMed ID: 37448360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IMCHGAN: Inductive Matrix Completion With Heterogeneous Graph Attention Networks for Drug-Target Interactions Prediction.
    Li J; Wang J; Lv H; Zhang Z; Wang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):655-665. PubMed ID: 34115592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graph Convolutional Autoencoder and Generative Adversarial Network-Based Method for Predicting Drug-Target Interactions.
    Sun C; Xuan P; Zhang T; Ye Y
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):455-464. PubMed ID: 32750854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DTiGNN: Learning drug-target embedding from a heterogeneous biological network based on a two-level attention-based graph neural network.
    Muniyappan S; Rayan AXA; Varrieth GT
    Math Biosci Eng; 2023 Mar; 20(5):9530-9571. PubMed ID: 37161255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MultiDTI: drug-target interaction prediction based on multi-modal representation learning to bridge the gap between new chemical entities and known heterogeneous network.
    Zhou D; Xu Z; Li W; Xie X; Peng S
    Bioinformatics; 2021 Dec; 37(23):4485-4492. PubMed ID: 34180970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GSRF-DTI: a framework for drug-target interaction prediction based on a drug-target pair network and representation learning on a large graph.
    Zhu Y; Ning C; Zhang N; Wang M; Zhang Y
    BMC Biol; 2024 Jul; 22(1):156. PubMed ID: 39020316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MHADTI: predicting drug-target interactions via multiview heterogeneous information network embedding with hierarchical attention mechanisms.
    Tian Z; Peng X; Fang H; Zhang W; Dai Q; Ye Y
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36242566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DTI-HeNE: a novel method for drug-target interaction prediction based on heterogeneous network embedding.
    Yue Y; He S
    BMC Bioinformatics; 2021 Sep; 22(1):418. PubMed ID: 34479477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EDC-DTI: An end-to-end deep collaborative learning model based on multiple information for drug-target interactions prediction.
    Yuan Y; Zhang Y; Meng X; Liu Z; Wang B; Miao R; Zhang R; Su W; Liu L
    J Mol Graph Model; 2023 Jul; 122():108498. PubMed ID: 37126908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying drug-target interactions based on graph convolutional network and deep neural network.
    Zhao T; Hu Y; Valsdottir LR; Zang T; Peng J
    Brief Bioinform; 2021 Mar; 22(2):2141-2150. PubMed ID: 32367110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network-based prediction of drug-target interactions using an arbitrary-order proximity embedded deep forest.
    Zeng X; Zhu S; Hou Y; Zhang P; Li L; Li J; Huang LF; Lewis SJ; Nussinov R; Cheng F
    Bioinformatics; 2020 May; 36(9):2805-2812. PubMed ID: 31971579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SNF-NN: computational method to predict drug-disease interactions using similarity network fusion and neural networks.
    Jarada TN; Rokne JG; Alhajj R
    BMC Bioinformatics; 2021 Jan; 22(1):28. PubMed ID: 33482713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HINGRL: predicting drug-disease associations with graph representation learning on heterogeneous information networks.
    Zhao BW; Hu L; You ZH; Wang L; Su XR
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34891172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. iGRLDTI: an improved graph representation learning method for predicting drug-target interactions over heterogeneous biological information network.
    Zhao BW; Su XR; Hu PW; Huang YA; You ZH; Hu L
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37505483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DTI-HETA: prediction of drug-target interactions based on GCN and GAT on heterogeneous graph.
    Shao K; Zhang Y; Wen Y; Zhang Z; He S; Bo X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35380622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EFMSDTI: Drug-target interaction prediction based on an efficient fusion of multi-source data.
    Zhang Y; Wu M; Wang S; Chen W
    Front Pharmacol; 2022; 13():1009996. PubMed ID: 36210804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information.
    Luo Y; Zhao X; Zhou J; Yang J; Zhang Y; Kuang W; Peng J; Chen L; Zeng J
    Nat Commun; 2017 Sep; 8(1):573. PubMed ID: 28924171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EGeRepDR: An enhanced genetic-based representation learning for drug repurposing using multiple biomedical sources.
    Muniyappan S; Rayan AXA; Varrieth GT
    J Biomed Inform; 2023 Nov; 147():104528. PubMed ID: 37858852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.