BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 33187741)

  • 1. Acrylamide formation and antioxidant activity in coffee during roasting - A systematic study.
    Schouten MA; Tappi S; Angeloni S; Cortese M; Caprioli G; Vittori S; Romani S
    Food Chem; 2021 May; 343():128514. PubMed ID: 33187741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of nutritional descriptors of roasting intensity in beverages of Arabica and Robusta coffee beans.
    Bicho NC; Leitão AE; Ramalho JC; De Alvarenga NB; Lidon FC
    Int J Food Sci Nutr; 2011 Dec; 62(8):865-71. PubMed ID: 22032554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nutraceutical compounds: Echinoids, flavonoids, xanthones and caffeine identified and quantitated in the leaves of Coffea arabica trees from three regions of Brazil.
    de Almeida RF; Trevisan MTS; Thomaziello RA; Breuer A; Klika KD; Ulrich CM; Owen RW
    Food Res Int; 2019 Jan; 115():493-503. PubMed ID: 30599970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of roasting degree on the antioxidant activity of different Arabica coffee quality classes.
    Odžaković B; Džinić N; Kukrić Z; Grujić S
    Acta Sci Pol Technol Aliment; 2016; 15(4):409-417. PubMed ID: 28071018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of optimum roasting conditions to obtain possible health benefit supplement, antioxidants from coffee beans.
    Sulaiman SF; Moon JK; Shibamoto T
    J Diet Suppl; 2011 Sep; 8(3):293-310. PubMed ID: 22432728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 5-Hydroxymethylfurfural accumulation plays a critical role on acrylamide formation in coffee during roasting as confirmed by multiresponse kinetic modelling.
    Hamzalıoğlu A; Gökmen V
    Food Chem; 2020 Jul; 318():126467. PubMed ID: 32145542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of spent coffee obtained from the most common coffeemakers as a source of hydrophilic bioactive compounds.
    Bravo J; Juániz I; Monente C; Caemmerer B; Kroh LW; De Peña MP; Cid C
    J Agric Food Chem; 2012 Dec; 60(51):12565-73. PubMed ID: 23214450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arabica and Conilon coffee flowers: Bioactive compounds and antioxidant capacity under different processes.
    de Abreu Pinheiro F; Ferreira Elias L; de Jesus Filho M; Uliana Modolo M; Gomes Rocha JC; Fumiere Lemos M; Scherer R; Soares Cardoso W
    Food Chem; 2021 Jan; 336():127701. PubMed ID: 32781354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of biochemical features of defective Coffea arabica L. beans.
    Casas MI; Vaughan MJ; Bonello P; McSpadden Gardener B; Grotewold E; Alonso AP
    Food Res Int; 2017 May; 95():59-67. PubMed ID: 28395826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel UHPLC method for determining the degree of coffee roasting by analysis of furans.
    Macheiner L; Schmidt A; Karpf F; Mayer HK
    Food Chem; 2021 Mar; 341(Pt 1):128165. PubMed ID: 33038777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical composition and sensory profiling of coffees treated with asparaginase to decrease acrylamide formation during roasting.
    CarolinaVieira-Porto A; Cunha SC; Rosa EC; DePaula J; Cruz AG; Freitas-Silva O; Fernandes JO; Farah A
    Food Res Int; 2024 Jun; 186():114333. PubMed ID: 38729693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of acrylamide during roasting of coffee.
    Bagdonaite K; Derler K; Murkovic M
    J Agric Food Chem; 2008 Aug; 56(15):6081-6. PubMed ID: 18624446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quality and bioactive compounds of blends of Arabica and Robusta spray-dried coffee.
    Wongsa P; Khampa N; Horadee S; Chaiwarith J; Rattanapanone N
    Food Chem; 2019 Jun; 283():579-587. PubMed ID: 30722914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing polyphenols content and antioxidant activity in coffee beans according to origin and the degree of roasting.
    Dybkowska E; Sadowska A; Rakowska R; Dębowska M; Świderski F; Świąder K
    Rocz Panstw Zakl Hig; 2017; 68(4):347-353. PubMed ID: 29265388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of the roasting conditions to lower acrylamide content and improve the nutrient composition and antioxidant properties of Coffea arabica.
    Endeshaw H; Belay A
    PLoS One; 2020; 15(8):e0237265. PubMed ID: 32841240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Processing effects on acrylamide content in roasted coffee production.
    Esposito F; Fasano E; De Vivo A; Velotto S; Sarghini F; Cirillo T
    Food Chem; 2020 Jul; 319():126550. PubMed ID: 32169765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative evaluation of acrylamide and polycyclic aromatic hydrocarbons contents in Robusta coffee beans roasted by hot air and superheated steam.
    Rattanarat P; Chindapan N; Devahastin S
    Food Chem; 2021 Mar; 341(Pt 1):128266. PubMed ID: 33035858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of p-coumaroylquinic acids in commercial Coffea spp. of different geographical origin and in other wild coffee species.
    Gutiérrez Ortiz AL; Berti F; Solano Sánchez W; Navarini L; Colomban S; Crisafulli P; Forzato C
    Food Chem; 2019 Jul; 286():459-466. PubMed ID: 30827633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on acrylamide levels in roasting, storage and brewing of coffee.
    Lantz I; Ternité R; Wilkens J; Hoenicke K; Guenther H; van der Stegen GH
    Mol Nutr Food Res; 2006 Nov; 50(11):1039-46. PubMed ID: 17054100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of chlorogenic acids to the iron-reducing activity of coffee beverages.
    Moreira DP; Monteiro MC; Ribeiro-Alves M; Donangelo CM; Trugo LC
    J Agric Food Chem; 2005 Mar; 53(5):1399-402. PubMed ID: 15740013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.