These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 33187783)
41. Effects of winter covering crop residue incorporation on CH₄ and N₂O emission from double-cropped paddy fields in southern China. Tang H; Xiao X; Tang W; Wang K; Sun J; Li W; Yang G Environ Sci Pollut Res Int; 2015 Aug; 22(16):12689-98. PubMed ID: 25913315 [TBL] [Abstract][Full Text] [Related]
42. Effects of steel slag and biochar amendments on CO Wang C; Wang W; Sardans J; Singla A; Zeng C; Lai DYF; Peñuelas J Environ Geochem Health; 2019 Jun; 41(3):1419-1431. PubMed ID: 30535544 [TBL] [Abstract][Full Text] [Related]
43. Optimizing the harvesting stage of rye as a green manure to maximize nutrient production and to minimize methane production in mono-rice paddies. Kim SY; Park CK; Gwon HS; Khan MI; Kim PJ Sci Total Environ; 2015 Dec; 537():441-6. PubMed ID: 26282776 [TBL] [Abstract][Full Text] [Related]
44. Microbial explanations for field-aged biochar mitigating greenhouse gas emissions during a rice-growing season. Wu Z; Zhang X; Dong Y; Xu X; Xiong Z Environ Sci Pollut Res Int; 2018 Nov; 25(31):31307-31317. PubMed ID: 30194577 [TBL] [Abstract][Full Text] [Related]
45. [Effects of rice-duck farming on paddy field's methane emission]. Zhan M; Cao CG; Wang JP; Yuan WL; Jiang Y; Gao DW Ying Yong Sheng Tai Xue Bao; 2008 Dec; 19(12):2666-72. PubMed ID: 19288721 [TBL] [Abstract][Full Text] [Related]
46. Enhanced rice production but greatly reduced carbon emission following biochar amendment in a metal-polluted rice paddy. Zhang A; Bian R; Li L; Wang X; Zhao Y; Hussain Q; Pan G Environ Sci Pollut Res Int; 2015 Dec; 22(23):18977-86. PubMed ID: 26213131 [TBL] [Abstract][Full Text] [Related]
47. Mitigation of methane gas emissions in flooded paddy soil through the utilization of methanotrophs. Davamani V; Parameswari E; Arulmani S Sci Total Environ; 2020 Jul; 726():138570. PubMed ID: 32305766 [TBL] [Abstract][Full Text] [Related]
48. A simplified sampling procedure for the estimation of methane emission in rice fields. Khokhar NH; Park JW Environ Monit Assess; 2017 Aug; 189(9):468. PubMed ID: 28840377 [TBL] [Abstract][Full Text] [Related]
49. Wood vinegar and biochar co-application mitigates nitrous oxide and methane emissions from rice paddy soil: A two-year experiment. Feng Y; Li D; Sun H; Xue L; Zhou B; Yang L; Liu J; Xing B Environ Pollut; 2020 Dec; 267():115403. PubMed ID: 33254598 [TBL] [Abstract][Full Text] [Related]
50. Effects of land use conversion and fertilization on CH Liu H; Liu G; Li Y; Wu X; Liu D; Dai X; Xu M; Yang F Environ Sci Pollut Res Int; 2016 Oct; 23(20):20269-20280. PubMed ID: 27447473 [TBL] [Abstract][Full Text] [Related]
51. [China's rice field greenhouse gas emission under climate change based on DNDC model simulation]. Tian Z; Niu YL; Sun LX; Li CS; Liu CJ; Fan DL Ying Yong Sheng Tai Xue Bao; 2015 Mar; 26(3):793-9. PubMed ID: 26211061 [TBL] [Abstract][Full Text] [Related]
52. Oxygen in the air and oxygen dissolved in the floodwater both sustain growth of aquatic adventitious roots in rice. Lin C; Ogorek LLP; Pedersen O; Sauter M J Exp Bot; 2021 Feb; 72(5):1879-1890. PubMed ID: 33206163 [TBL] [Abstract][Full Text] [Related]
53. Effect of simulated acid rain on CO Wang C; Wang W; Sardans J; An W; Zeng C; Abid AA; Peñuelas J Environ Pollut; 2018 Dec; 243(Pt B):1196-1205. PubMed ID: 30267916 [TBL] [Abstract][Full Text] [Related]
54. Coupled steel slag and biochar amendment correlated with higher methanotrophic abundance and lower CH Wang M; Wang C; Lan X; Abid AA; Xu X; Singla A; Sardans J; Llusià J; Peñuelas J; Wang W Environ Geochem Health; 2020 Feb; 42(2):483-497. PubMed ID: 31342217 [TBL] [Abstract][Full Text] [Related]
55. Biochar decreases methanogenic archaea abundance and methane emissions in a flooded paddy soil. Qi L; Ma Z; Chang SX; Zhou P; Huang R; Wang Y; Wang Z; Gao M Sci Total Environ; 2021 Jan; 752():141958. PubMed ID: 32892054 [TBL] [Abstract][Full Text] [Related]
56. Methane emission from fields with three various rice straw treatments in Taiwan paddy soils. Liou RM; Huang SN; Lin CW; Chen SH J Environ Sci Health B; 2003 Jul; 38(4):511-27. PubMed ID: 12856932 [TBL] [Abstract][Full Text] [Related]
57. Mitigating methane emission via annual biochar amendment pyrolyzed with rice straw from the same paddy field. Nan Q; Wang C; Wang H; Yi Q; Wu W Sci Total Environ; 2020 Dec; 746():141351. PubMed ID: 32768791 [TBL] [Abstract][Full Text] [Related]
58. A comparison of methane emissions following rice paddies conversion to crab-fish farming wetlands in southeast China. Hu Z; Wu S; Ji C; Zou J; Zhou Q; Liu S Environ Sci Pollut Res Int; 2016 Jan; 23(2):1505-15. PubMed ID: 26374545 [TBL] [Abstract][Full Text] [Related]
59. Lysigenous aerenchyma formation involves non-apoptotic programmed cell death in rice (Oryza sativa L.) roots. Joshi R; Kumar P Physiol Mol Biol Plants; 2012 Jan; 18(1):1-9. PubMed ID: 23573035 [TBL] [Abstract][Full Text] [Related]
60. [Differences and Relationship Between Rhizosphere Characteristics and Methane Emissions of Double-cropping Rice Variety]. Xiao ZX; Fu ZQ; Xu HQ; Su S; Guo Y; Zhang L; Tang JW Huan Jing Ke Xue; 2019 Feb; 40(2):904-914. PubMed ID: 30628359 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]