These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33187783)

  • 61. [Effects of the Crop Rotation on Greenhouse Gases from Flooded Paddy Fields].
    Feng X; Jiang CS; Peng XL; Li YP; Hao QJ
    Huan Jing Ke Xue; 2019 Jan; 40(1):392-400. PubMed ID: 30628298
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Simultaneous effects of biochar and nitrogen fertilization on nitrous oxide and methane emissions from paddy rice.
    Shaukat M; Samoy-Pascual K; Maas EDVL; Ahmad A
    J Environ Manage; 2019 Oct; 248():109242. PubMed ID: 31315074
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Mutualistic fungus Phomopsis liquidambari increases root aerenchyma formation through auxin-mediated ethylene accumulation in rice (Oryza sativa L.).
    Hu LY; Li D; Sun K; Cao W; Fu WQ; Zhang W; Dai CC
    Plant Physiol Biochem; 2018 Sep; 130():367-376. PubMed ID: 30055345
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Comparison of greenhouse gas emissions from rice paddy fields under different nitrogen fertilization loads in Chongming Island, Eastern China.
    Zhang X; Yin S; Li Y; Zhuang H; Li C; Liu C
    Sci Total Environ; 2014 Feb; 472():381-8. PubMed ID: 24295754
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Greenhouse gas emissions and energy exchange in wet and dry season rice: eddy covariance-based approach.
    Swain CK; Nayak AK; Bhattacharyya P; Chatterjee D; Chatterjee S; Tripathi R; Singh NR; Dhal B
    Environ Monit Assess; 2018 Jun; 190(7):423. PubMed ID: 29938374
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Integrated rice-duck farming mitigates the global warming potential in rice season.
    Xu G; Liu X; Wang Q; Yu X; Hang Y
    Sci Total Environ; 2017 Jan; 575():58-66. PubMed ID: 27728846
    [TBL] [Abstract][Full Text] [Related]  

  • 67. [Effects of Mushroom Residue Application Rates on Net Greenhouse Gas Emissions in the Purple Paddy Soil].
    Qi L; Gao M; Zhou P; Wang FH; Gao YQ; Chen SQ; Wu SQ; Deng JL; Wen T
    Huan Jing Ke Xue; 2018 Jun; 39(6):2827-2836. PubMed ID: 29965641
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effects of nitrogen and biochar amendment on soil methane concentration profiles and diffusion in a rice-wheat annual rotation system.
    Xu X; Wu Z; Dong Y; Zhou Z; Xiong Z
    Sci Rep; 2016 Dec; 6():38688. PubMed ID: 27929052
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Greenhouse gas emissions and global warming potential of traditional and diversified tropical rice rotation systems.
    Weller S; Janz B; Jörg L; Kraus D; Racela HS; Wassmann R; Butterbach-Bahl K; Kiese R
    Glob Chang Biol; 2016 Jan; 22(1):432-48. PubMed ID: 26386203
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effects of straw returning and feeding on greenhouse gas emissions from integrated rice-crayfish farming in Jianghan Plain, China.
    Sun Z; Guo Y; Li C; Cao C; Yuan P; Zou F; Wang J; Jia P; Wang J
    Environ Sci Pollut Res Int; 2019 Apr; 26(12):11710-11718. PubMed ID: 30806926
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Discrepant responses of methane emissions to additions with different organic compound classes of rice straw in paddy soil.
    Tan W; Yu H; Huang C; Li D; Zhang H; Jia Y; Wang G; Xi B
    Sci Total Environ; 2018 Jul; 630():141-145. PubMed ID: 29477111
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Producing more grain yield of rice with less ammonia volatilization and greenhouse gases emission using slow/controlled-release urea.
    Guo C; Ren T; Li P; Wang B; Zou J; Hussain S; Cong R; Wu L; Lu J; Li X
    Environ Sci Pollut Res Int; 2019 Jan; 26(3):2569-2579. PubMed ID: 30474811
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Life cycle GHG evaluation of organic rice production in northern Thailand.
    Yodkhum S; Gheewala SH; Sampattagul S
    J Environ Manage; 2017 Jul; 196():217-223. PubMed ID: 28288358
    [TBL] [Abstract][Full Text] [Related]  

  • 74. [Rules and impact factors of greenhouse gases emission in the saline-alkali paddy fields in different years].
    Tang J; Fang TR; Hou KY; Zhao RZ; Liang S
    Huan Jing Ke Xue; 2014 Dec; 35(12):4727-34. PubMed ID: 25826947
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Nitrogen fertilizer in combination with an ameliorant mitigated yield-scaled greenhouse gas emissions from a coastal saline rice field in southeastern China.
    Sun L; Ma Y; Li B; Xiao C; Fan L; Xiong Z
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):15896-15908. PubMed ID: 29589234
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Assessing the performance of the photo-acoustic infrared gas monitor for measuring CO(2), N(2)O, and CH(4) fluxes in two major cereal rotations.
    Tirol-Padre A; Rai M; Gathala M; Sharma S; Kumar V; Sharma PC; Sharma DK; Wassmann R; Ladha J
    Glob Chang Biol; 2014 Jan; 20(1):287-99. PubMed ID: 23929733
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effects of O2 and CH4 on presence and activity of the indigenous methanotrophic community in rice field soil.
    Henckel T; Roslev P; Conrad R
    Environ Microbiol; 2000 Dec; 2(6):666-79. PubMed ID: 11214799
    [TBL] [Abstract][Full Text] [Related]  

  • 78. [Effects of biochar application on greenhouse gas emission from paddy soil and its physical and chemical properties].
    Liu YX; Wang YF; Lü HH; Chen Y; Tang X; Wu CY; Zhong ZK; Yang SM
    Ying Yong Sheng Tai Xue Bao; 2013 Aug; 24(8):2166-72. PubMed ID: 24380334
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Re-estimating methane emissions from Chinese paddy fields based on a regional empirical model and high-spatial-resolution data.
    Sun J; Wang M; Xu X; Cheng K; Yue Q; Pan G
    Environ Pollut; 2020 Oct; 265(Pt A):115017. PubMed ID: 32593074
    [TBL] [Abstract][Full Text] [Related]  

  • 80. METALLOTHIONEIN genes encoding ROS scavenging enzymes are down-regulated in the root cortex during inducible aerenchyma formation in rice.
    Yamauchi T; Fukazawa A; Nakazono M
    Plant Signal Behav; 2017 Nov; 12(11):e1388976. PubMed ID: 29035627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.