These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 33187783)
81. Methane and Nitrous Oxide Emissions Reduced Following Conversion of Rice Paddies to Inland Crab-Fish Aquaculture in Southeast China. Liu S; Hu Z; Wu S; Li S; Li Z; Zou J Environ Sci Technol; 2016 Jan; 50(2):633-42. PubMed ID: 26669815 [TBL] [Abstract][Full Text] [Related]
82. Ethylene-dependent aerenchyma formation in adventitious roots is regulated differently in rice and maize. Yamauchi T; Tanaka A; Mori H; Takamure I; Kato K; Nakazono M Plant Cell Environ; 2016 Oct; 39(10):2145-57. PubMed ID: 27169562 [TBL] [Abstract][Full Text] [Related]
83. Modeling-based age-dependent analysis reveals the net patterns of ethylene-dependent and -independent aerenchyma formation in rice and maize roots. Yamauchi T; Nakazono M Plant Sci; 2022 Aug; 321():111340. PubMed ID: 35696932 [TBL] [Abstract][Full Text] [Related]
84. Decrease in the annual emissions of CH Wu L; Wu X; Shaaban M; Zhou M; Zhao J; Hu R Environ Sci Pollut Res Int; 2018 May; 25(13):13014-13025. PubMed ID: 29480394 [TBL] [Abstract][Full Text] [Related]
85. Biochar decreases nitrogen oxide and enhances methane emissions via altering microbial community composition of anaerobic paddy soil. Wang N; Chang ZZ; Xue XM; Yu JG; Shi XX; Ma LQ; Li HB Sci Total Environ; 2017 Mar; 581-582():689-696. PubMed ID: 28063654 [TBL] [Abstract][Full Text] [Related]
86. Cattle Manure Enhances Methanogens Diversity and Methane Emissions Compared to Swine Manure under Rice Paddy. Kim SY; Pramanik P; Bodelier PL; Kim PJ PLoS One; 2014; 9(12):e113593. PubMed ID: 25494364 [TBL] [Abstract][Full Text] [Related]
87. [Effects of different rotation systems on greenhouse gas (CH₄ and N₂O) emissions in the Taihu Lake region, China]. Hu AY; Sun X; Liu Q Ying Yong Sheng Tai Xue Bao; 2016 Jan; 27(1):99-106. PubMed ID: 27228598 [TBL] [Abstract][Full Text] [Related]
88. Mitigating effects of ex situ application of rice straw on CH Wang W; Wu X; Chen A; Xie X; Wang Y; Yin C Sci Rep; 2016 Nov; 6():37402. PubMed ID: 27869209 [TBL] [Abstract][Full Text] [Related]
89. Assessing alternatives for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next twenty years. Li C; Salas W; DeAngelo B; Rose S J Environ Qual; 2006; 35(4):1554-65. PubMed ID: 16825476 [TBL] [Abstract][Full Text] [Related]
90. Effects of straw incorporation along with microbial inoculant on methane and nitrous oxide emissions from rice fields. Liu G; Yu H; Ma J; Xu H; Wu Q; Yang J; Zhuang Y Sci Total Environ; 2015 Jun; 518-519():209-16. PubMed ID: 25756676 [TBL] [Abstract][Full Text] [Related]
91. Paddy soil drainage influences residue carbon contribution to methane emissions. Tariq A; Jensen LS; Sander BO; de Tourdonnet S; Ambus PL; Thanh PH; Trinh MV; de Neergaard A J Environ Manage; 2018 Nov; 225():168-176. PubMed ID: 30119009 [TBL] [Abstract][Full Text] [Related]
92. [Effects of Different Fertilization Modes on Greenhouse Gas Emission Characteristics of Paddy Fields in Hot Areas]. Tian W; Wu YZ; Tang SR; Hu YL; Lai QQ; Wen DN; Meng L; Wu CD Huan Jing Ke Xue; 2019 May; 40(5):2426-2434. PubMed ID: 31087884 [TBL] [Abstract][Full Text] [Related]
93. Response of CH4 emission of paddy fields to land management practices at a microcosmic cultivation scale in China. Shao JA; Huang XX; Gao M; Wei CF; Xie DT; Cai ZC J Environ Sci (China); 2005; 17(4):691-8. PubMed ID: 16158607 [TBL] [Abstract][Full Text] [Related]
94. Investigating options for attenuating methane emission from Indian rice fields. Singh SN; Verma A; Tyagi L Environ Int; 2003 Aug; 29(5):547-53. PubMed ID: 12742397 [TBL] [Abstract][Full Text] [Related]
95. The effect of integrated rice-frog ecosystem on rice morphological traits and methane emission from paddy fields. Fang K; Dai W; Chen H; Wang J; Gao H; Sha Z; Cao L Sci Total Environ; 2021 Aug; 783():147123. PubMed ID: 34088155 [TBL] [Abstract][Full Text] [Related]
96. A Role for Auxin in Ethylene-Dependent Inducible Aerenchyma Formation in Rice Roots. Yamauchi T; Tanaka A; Tsutsumi N; Inukai Y; Nakazono M Plants (Basel); 2020 May; 9(5):. PubMed ID: 32403344 [TBL] [Abstract][Full Text] [Related]
97. Enhancement of porosity and aerenchyma formation in nitrogen-deficient rice roots. Abiko T; Obara M Plant Sci; 2014 Feb; 215-216():76-83. PubMed ID: 24388517 [TBL] [Abstract][Full Text] [Related]
98. Regulation of microbial methane production and oxidation by intermittent drainage in rice field soil. Ma K; Lu Y FEMS Microbiol Ecol; 2011 Mar; 75(3):446-56. PubMed ID: 21198683 [TBL] [Abstract][Full Text] [Related]
99. Manure amendment increased the abundance of methanogens and methanotrophs but suppressed the type I methanotrophs in rice paddies. Wang PX; Yang YD; Wang XQ; Zhao J; Peixoto L; Zeng ZH; Zang HD Environ Sci Pollut Res Int; 2020 Mar; 27(8):8016-8027. PubMed ID: 31889290 [TBL] [Abstract][Full Text] [Related]
100. Effects of elevated ozone concentration on CH4 and N2O emission from paddy soil under fully open-air field conditions. Tang H; Liu G; Zhu J; Kobayashi K Glob Chang Biol; 2015 Apr; 21(4):1727-36. PubMed ID: 25403809 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]