BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 33187789)

  • 1. Wideband absorbance pattern in adults with otosclerosis and ossicular chain discontinuity.
    Karuppannan A; Barman A
    Auris Nasus Larynx; 2021 Aug; 48(4):583-589. PubMed ID: 33187789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wideband absorbance tympanometry: a novel method in identifying otosclerosis.
    Karuppannan A; Barman A
    Eur Arch Otorhinolaryngol; 2021 Nov; 278(11):4305-4314. PubMed ID: 33388979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wideband energy reflectance measurements of ossicular chain discontinuity and repair in human temporal bone.
    Feeney MP; Grant IL; Mills DM
    Ear Hear; 2009 Aug; 30(4):391-400. PubMed ID: 19424071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Normative wideband absorbance measures in children: a cross-sectional study].
    Wang XY; Wang LM; Li Y; Zhou Y; Jin X; Shi JF; Zheng ZP; Liu P; Liu HH
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2023 Jul; 58(7):672-680. PubMed ID: 37455112
    [No Abstract]   [Full Text] [Related]  

  • 5. Identifying Otosclerosis with Aural Acoustical Tests of Absorbance, Group Delay, Acoustic Reflex Threshold, and Otoacoustic Emissions.
    Keefe DH; Archer KL; Schmid KK; Fitzpatrick DF; Feeney MP; Hunter LL
    J Am Acad Audiol; 2017 Oct; 28(9):838-860. PubMed ID: 28972472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differentiating among conductive hearing loss conditions with wideband tympanometry.
    Kim SY; Han JJ; Oh SH; Lee JH; Suh MW; Kim MH; Park MK
    Auris Nasus Larynx; 2019 Feb; 46(1):43-49. PubMed ID: 29885747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can Wideband Absorbance Be Used in the Detection of Ossicular Chain Defects?
    Turanoglu FS; Ozdemir O; Ertugay CK; Yigit O
    Iran J Otorhinolaryngol; 2022 Sep; 34(124):225-232. PubMed ID: 36246199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The usefulness of wideband absorbance in the diagnosis of otosclerosis.
    Kelava I; Ries M; Valent A; Ajduk J; Trotić R; Košec A; Bedeković V
    Int J Audiol; 2020 Nov; 59(11):859-865. PubMed ID: 32633634
    [No Abstract]   [Full Text] [Related]  

  • 9. The Audiometric and Mechanical Effects of Partial Ossicular Discontinuity.
    Farahmand RB; Merchant GR; Lookabaugh SA; Röösli C; Ulku CH; McKenna MJ; de Venecia RK; Halpin CF; Rosowski JJ; Nakajima HH
    Ear Hear; 2016; 37(2):206-15. PubMed ID: 26510125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wideband energy reflectance measurements in adults with middle-ear disorders.
    Feeney MP; Grant IL; Marryott LP
    J Speech Lang Hear Res; 2003 Aug; 46(4):901-11. PubMed ID: 12959468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wideband acoustic immitance - Absorbance measurements in ears after stapes surgery.
    Niemczyk E; Lachowska M; Tataj E; Kurczak K; Niemczyk K
    Auris Nasus Larynx; 2020 Dec; 47(6):909-923. PubMed ID: 32505608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of ear-canal reflectance and umbo velocity in patients with conductive hearing loss: a preliminary study.
    Nakajima HH; Pisano DV; Roosli C; Hamade MA; Merchant GR; Mahfoud L; Halpin CF; Rosowski JJ; Merchant SN
    Ear Hear; 2012; 33(1):35-43. PubMed ID: 21857516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preoperative evaluation of ossicular chain abnormality in patients with conductive deafness without perforation of the tympanic membrane.
    Tabuchi K; Murashita H; Okubo H; Takahashi K; Wada T; Hara A
    Arch Otolaryngol Head Neck Surg; 2005 Aug; 131(8):686-9. PubMed ID: 16103299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaural multiple frequency tympanometry measures: clinical utility for unilateral conductive hearing loss.
    Norrix LW; Burgan B; Ramirez N; Velenovsky DS
    J Am Acad Audiol; 2013 Mar; 24(3):231-40. PubMed ID: 23506667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Otosclerosis on Middle Ear Function Assessed With Wideband Absorbance and Absorbed Power.
    Feeney MP; Keefe DH; Hunter LL; Fitzpatrick DF; Putterman DB; Garinis AC
    Ear Hear; 2021; 42(3):547-557. PubMed ID: 33156125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wideband Acoustic Absorbance in Otosclerosis: Does Stapedotomy Restore Normal Tympanic Cavity Function?
    Durante AS; Nascimento PC; Almeida K; Servilha TR; Marçal GJ; Neto OMS
    Int Arch Otorhinolaryngol; 2022 Oct; 26(4):e730-e737. PubMed ID: 36405486
    [No Abstract]   [Full Text] [Related]  

  • 17. Carhart notch 2-kHz bone conduction threshold dip: a nondefinitive predictor of stapes fixation in conductive hearing loss with normal tympanic membrane.
    Kashio A; Ito K; Kakigi A; Karino S; Iwasaki S; Sakamoto T; Yasui T; Suzuki M; Yamasoba T
    Arch Otolaryngol Head Neck Surg; 2011 Mar; 137(3):236-40. PubMed ID: 21422306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Longitudinal Analysis of Pressurized Wideband Absorbance Measures in Healthy Young Infants.
    Wali HA; Mazlan R; Kei J
    Ear Hear; 2019; 40(5):1233-1241. PubMed ID: 30807541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wideband Absorbance Outcomes in Newborns: A Comparison With High-Frequency Tympanometry, Automated Brainstem Response, and Transient Evoked and Distortion Product Otoacoustic Emissions.
    Aithal S; Kei J; Driscoll C; Khan A; Swanston A
    Ear Hear; 2015; 36(5):e237-50. PubMed ID: 25951046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic behavior of the middle ear based on sweep frequency tympanometry.
    Wada H; Kobayashi T; Suetake M; Tachizaki H
    Audiology; 1989; 28(3):127-34. PubMed ID: 2735847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.